Gotowa bibliografia na temat „Magnetic field- Electrical discharge machining”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Magnetic field- Electrical discharge machining”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Magnetic field- Electrical discharge machining"
Walkar, Hemant, Vijaykumar S. Jatti i T. P. Singh. "Magnetic Field Assisted Electrical Discharge Machining of AISI 4140". Applied Mechanics and Materials 592-594 (lipiec 2014): 479–83. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.479.
Pełny tekst źródłaZhang, Zhen, Yi Zhang, Wuyi Ming, Yanming Zhang, Chen Cao i Guojun Zhang. "A review on magnetic field assisted electrical discharge machining". Journal of Manufacturing Processes 64 (kwiecień 2021): 694–722. http://dx.doi.org/10.1016/j.jmapro.2021.01.054.
Pełny tekst źródłaCheng, Chih-Ping, Kun-Ling Wu, Chao-Chuang Mai, Yu-Shan Hsu i Biing-Hwa Yan. "Magnetic field-assisted electrochemical discharge machining". Journal of Micromechanics and Microengineering 20, nr 7 (7.06.2010): 075019. http://dx.doi.org/10.1088/0960-1317/20/7/075019.
Pełny tekst źródłaRouniyar, Arun Kumar, i Pragya Shandilya. "Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, nr 12 (26.03.2019): 2283–91. http://dx.doi.org/10.1177/0954405419838954.
Pełny tekst źródłaYu, Po Huai, Jung Chou Hung, Hsin Min Lee, Kun Ling Wu i Biing Hwa Yan. "Machining Characteristics of Magnetic Force-Assisted Electrolytic Machining for Polycrystalline Silicon". Advanced Materials Research 325 (sierpień 2011): 523–29. http://dx.doi.org/10.4028/www.scientific.net/amr.325.523.
Pełny tekst źródłaYeo, S. H., M. Murali i H. T. Cheah. "Magnetic field assisted micro electro-discharge machining". Journal of Micromechanics and Microengineering 14, nr 11 (11.08.2004): 1526–29. http://dx.doi.org/10.1088/0960-1317/14/11/013.
Pełny tekst źródłaJadhav, Rahul R., Vijaykumar S. Jatti i T. P. Singh. "Magnetic Field Assisted Electric Discharge Machining of Cryo-Treated Monel 400 Alloy". Applied Mechanics and Materials 787 (sierpień 2015): 371–75. http://dx.doi.org/10.4028/www.scientific.net/amm.787.371.
Pełny tekst źródłaTakezawa, Hideki, Nobuhiro Yokote i Naotake Mohri. "External Magnetic Field Control during EDM of a Permanent Magnet". Advanced Materials Research 1017 (wrzesień 2014): 806–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1017.806.
Pełny tekst źródłaAblyaz, Timur Rizovich, Preetkanwal Singh Bains, Sarabjeet Singh Sidhu, Karim Ravilevich Muratov i Evgeny Sergeevich Shlykov. "Impact of Magnetic Field Environment on the EDM Performance of Al-SiC Metal Matrix Composite". Micromachines 12, nr 5 (21.04.2021): 469. http://dx.doi.org/10.3390/mi12050469.
Pełny tekst źródłaTeimouri, Reza, i Hamid Baseri. "Study of Tool Wear and Overcut in EDM Process with Rotary Tool and Magnetic Field". Advances in Tribology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/895918.
Pełny tekst źródłaRozprawy doktorskie na temat "Magnetic field- Electrical discharge machining"
Penkal, Bryan James. "Steps in the Development of a Full Particle-in-Cell, Monte Carlo Simulation of the Plasma in the Discharge Chamber of an Ion Engine". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1367586856.
Pełny tekst źródłaMokhtari, Ahmed. "Etude et realisation d'un plasma dense quasi-stationnaire et homogene de 1m de long en presence d'un champ magnetique module spatialement". Paris 6, 1988. http://www.theses.fr/1988PA066423.
Pełny tekst źródłaBeravala, Hardikkumar Shashikantbhai. "Experimental investigations and modelling of magnetic field-air/gas assisted electrical discharge machining". Thesis, 2018. http://eprint.iitd.ac.in:80//handle/2074/7984.
Pełny tekst źródłaLin, Chun-yi, i 林軍屹. "Study on Machining of Quartz by Using Adjustable Magnetic Field Assisted in Electrochemical Discharge Machining". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/97075951966144456631.
Pełny tekst źródła國立中央大學
機械工程研究所
100
Since quartz is a hard and brittle material, it is difficult to achieve high efficiency and high reliability using conventional methods, especially in the manufacturing of micro parts and components. Electrochemical discharge machining (ECDM) is an emerging non-traditional machining process that involves high-temperature melting assisted by accelerated chemical etching. During ECDM, gas film will be formed on the tool electrode surface due to electrochemical reaction and then result in discharge phenomenon. Therefore both the structure and stability of gas film have significant effect factors on the efficiency and precision of machining. During ECDM, the impact of high heat discharged and the differences in electrolyte cycle cause gas film to be irregular in structure and unstable in status. As a result, both the quality and efficiency of ECDM are undermined. Therefore, this study will first explore the effect of different electrode types for processing performance, and in order to improve the stability of gas film structure, this study attempt to use the tunable magnetic field (electromagnet) effect keeps bubbles move quickly form the tool electrode. both the stability of gas film structure and the efficiency of electrolyte cycle in micro holes are greatly enhanced. According to the experimental results, by changing the electrode shape, that machining time was reduced by 73.8%, can be substantially improved processing efficiency. Then increase the tunable magnetic field, that machining time was reduced by 49.5%, and the standard deviation of the processing time achieve 91.8%. Finally, tunable magnetic field generated by asymmetric gas film type, further enhance the capacity of the electrolyte cycle. Thus machining time was reduced by 24.4% again.
Części książek na temat "Magnetic field- Electrical discharge machining"
Singh, Mahavir, Vyom Sharma i Janakarajan Ramkumar. "Magnetic Field Assistance in the EDM Process". W Electric Discharge Hybrid-Machining Processes, 201–24. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202301-10.
Pełny tekst źródłaRajkumar, G. Mannoj, Abimannan Giridharan, R. Oyyaravelu i A. S. S. Balan. "Investigation on Magnetic Field-assisted Near-dry Electrical Discharge Machining of Inconel 600". W Lecture Notes on Multidisciplinary Industrial Engineering, 671–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9471-4_56.
Pełny tekst źródłaKhan, Mohd Yunus, P. Sudhakar Rao i B. S. Pabla. "A Framework for Magnetic Field-Assisted Electrical Discharge Machining (MFA-EDM) of Inconel-625 Using Bio-oil Dielectric". W Additive, Subtractive, and Hybrid Technologies, 77–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99569-0_6.
Pełny tekst źródłaRouniyar, Arun Kumar, i Pragya Shandilya. "Analysis and Optimization of Tool Wear Rate in Magnetic Field-Assisted Powder-Mixed Electrical Discharge Machining of Al6061 Alloy Using TLBO". W Lecture Notes on Multidisciplinary Industrial Engineering, 485–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9072-3_42.
Pełny tekst źródłaKao, Chen-Chun, i Albert Shih. "Micro Electrical Discharge Machining of Spray Holes for Diesel Fuel Systems". W Intelligent Energy Field Manufacturing, 213–41. CRC Press, 2010. http://dx.doi.org/10.1201/ebk1420071016-c7.
Pełny tekst źródłaFaisal, Nadeem, Sumit Bhowmik i Kaushik Kumar. "Recent Developments in Wire Electrical Discharge Machining". W Non-Conventional Machining in Modern Manufacturing Systems, 125–52. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-6161-3.ch006.
Pełny tekst źródłaMondal, Sibabrata, i Dipankar Bose. "Evaluation of Surface Roughness in Wire Electrical Discharge Turning Process". W Machine Learning Applications in Non-Conventional Machining Processes, 114–36. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3624-7.ch008.
Pełny tekst źródłaMukhopadhyay, Premangshu. "Analysis of Performance Characteristics by Firefly Algorithm-Based Electro Discharge Machining of SS 316". W Machine Learning Applications in Non-Conventional Machining Processes, 45–54. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3624-7.ch004.
Pełny tekst źródłaEqubal, Azhar, Md Israr Equbal, Md Asif Equbal i Anoop Kumar Sood. "An Insight on Current and Imminent Research Issues in EDM". W Non-Conventional Machining in Modern Manufacturing Systems, 33–54. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-6161-3.ch002.
Pełny tekst źródłaDas, Raja, i Mohan Kumar Pradhan. "Artificial Neural Network Training Algorithms in Modeling of Radial Overcut in EDM". W Soft Computing Techniques and Applications in Mechanical Engineering, 140–50. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3035-0.ch006.
Pełny tekst źródłaStreszczenia konferencji na temat "Magnetic field- Electrical discharge machining"
Kachari, Kishor Kumar, Yugandhara Rao Yadam, S. Ezhil, N. Arunachalam i Kavitha Arunachalam. "Design of near field magnetic probe for monitoring wire electrical discharge machining process". W 2022 IEEE Region 10 Symposium (TENSYMP). IEEE, 2022. http://dx.doi.org/10.1109/tensymp54529.2022.9864562.
Pełny tekst źródłaZhang, Jin, i Fuzhu Han. "High-Speed EDM Milling Using Rotating Short Arcs Under Composite Field". W ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63535.
Pełny tekst źródła"EFFECT OF MAGNETIC FIELD ON ELECTRODE WEAR RATIO IN ELECTRO-DISCHARGE MACHINING". W International Conference on Advancements and Recent Innovations in Mechanical, Production and Industrial Engineering. ELK Asia Pacific Journals, 2015. http://dx.doi.org/10.16962/elkapj/si.arimpie-2015.38.
Pełny tekst źródłaHepburn, D. M., B. G. Steward, L. A. Dissado i J. C. Fothergill. "Magnetic field disturbance of partial discharge activity in a cone-plane gap". W 2007 Electrical Insulation Conference and Electrical Manufacturing Expo. IEEE, 2007. http://dx.doi.org/10.1109/eeic.2007.4562606.
Pełny tekst źródłaJong Girl Ok, Bo Hyun Kim, Do Kwan Chung, Seung Min Lee, Woo Yong Sung, Wal Jun Kim, Chong Nam Chu i Yong Hyup Kim. "Electrical discharge machining of carbon nanomaterials: Mechanisms and the advanced field emission applications". W 2007 IEEE 20th International Vacuum Nanoelectronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/ivnc.2007.4480939.
Pełny tekst źródłaKlement'eva, Irina, i Valentin Bityurin. "Electrical Discharge - Gas Flows Media Interaction in External Magnetic Field". W 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1393.
Pełny tekst źródłaWallash, Al, Lydia Baril, Vladimir Kraz i Toni Gurga. "Electromagnetic field induced degradation of magnetic recording heads in a GTEM cell". W 2004 Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD). IEEE, 2004. http://dx.doi.org/10.1109/eosesd.2004.5272647.
Pełny tekst źródłaKlementyeva, Irina, Ivan Moralev, Valentin Bityurin i Anatoly Klimov. "Interaction of Electrical Discharge with Swirling Flow in External Magnetic Field". W 42nd AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3916.
Pełny tekst źródłaMurdiya, Fri, Budhi Anto, Eddy Hamdani, Suwitno, Edy Evrianto i Amun Amri. "Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap". W 2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI). IEEE, 2018. http://dx.doi.org/10.1109/icon-eei.2018.8784138.
Pełny tekst źródłaRaniszewski, Grzegorz. "Magnetic field in arc discharge systems for carbon nanotubes synthesis". W 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF). IEEE, 2017. http://dx.doi.org/10.1109/isef.2017.8090753.
Pełny tekst źródła