Gotowa bibliografia na temat „Magnetic Exchange Interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Magnetic Exchange Interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Magnetic Exchange Interaction"
Belokon, Valery I., i Olga I. Dyachenko. "Phase Transitions in Magnets with Competing Exchange Interactions". Solid State Phenomena 215 (kwiecień 2014): 119–22. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.119.
Pełny tekst źródłaBaranava, M. S. "Low-dimensional Magnetism in Compounds with Different Dimensions of Magnetic Interaction". Doklady BGUIR 20, nr 4 (29.06.2022): 62–70. http://dx.doi.org/10.35596/1729-7648-2022-20-4-62-70.
Pełny tekst źródłaKöbler, U., i A. Hoser. "Magnetic Interaction by Exchange of Field Bosons". Acta Physica Polonica A 121, nr 5-6 (maj 2012): 1176–78. http://dx.doi.org/10.12693/aphyspola.121.1176.
Pełny tekst źródłaIgarashi, Masukazu, Shun Tonooka, Hiroyuki Katada, Maki Maeda, Miki Hara i Roger Wood. "Exchange interaction energy in magnetic recording simulation". Journal of Applied Physics 117, nr 17 (7.05.2015): 17D127. http://dx.doi.org/10.1063/1.4915352.
Pełny tekst źródłaYu, Shinn-Sheng, i Ven-Chung Lee. "Indirect exchange interaction in diluted magnetic semiconductors". Journal of Physics: Condensed Matter 4, nr 11 (16.03.1992): 2961–75. http://dx.doi.org/10.1088/0953-8984/4/11/021.
Pełny tekst źródłaKimura, Izuru. "Magnetic structure and exchange interaction in DyCu2". Journal of Magnetism and Magnetic Materials 70, nr 1-3 (grudzień 1987): 273–74. http://dx.doi.org/10.1016/0304-8853(87)90436-7.
Pełny tekst źródłaJekal, Eunsung. "External Environment Dependent Spin and Orbital Exchange Interactions". Journal of Modeling and Simulation of Materials 3, nr 1 (29.07.2020): 79–83. http://dx.doi.org/10.21467/jmsm.3.1.79-83.
Pełny tekst źródłaOh, Young-Woo. "Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4Nanocomposite Ferrite". Journal of the Korean Magnetics Society 24, nr 3 (30.06.2014): 81–85. http://dx.doi.org/10.4283/jkms.2014.24.3.081.
Pełny tekst źródłaFeng, Peng, i Jianqiao Xie. "Optical resonant RKKY interaction in nanosystems". Canadian Journal of Physics 93, nr 11 (listopad 2015): 1269–73. http://dx.doi.org/10.1139/cjp-2014-0647.
Pełny tekst źródłaNauman, Muhammad, Tayyaba Hussain, Joonyoung Choi, Nara Lee, Young Jai Choi, Woun Kang i Younjung Jo. "Low-field magnetic anisotropy of Sr2IrO4". Journal of Physics: Condensed Matter 34, nr 13 (20.01.2022): 135802. http://dx.doi.org/10.1088/1361-648x/ac484d.
Pełny tekst źródłaRozprawy doktorskie na temat "Magnetic Exchange Interaction"
Inoue, Jun-ichiro. "Effective exchange interaction and Curie temperature in magnetic semiconductors". The American Physical Society, 2003. http://hdl.handle.net/2237/7112.
Pełny tekst źródłaSapozhnik, Alexey [Verfasser]. "Magnetic properties of antiferromagnetic Mn2Au: exchange interaction and domain manipulation / Alexey Sapozhnik". Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1170263666/34.
Pełny tekst źródłaKalapos, Thomas Lawrence. "Interaction of Water with the Proton Exchange Fuel Cell Membrane". Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1175891061.
Pełny tekst źródłaPinel, Lucas. "Probing the magnetic exchange interaction in agraphene-ferromagnetic insulator system usingQuantum Hall Effect and non-local resistancemeasurements". Thesis, KTH, Tillämpad fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-162232.
Pełny tekst źródłaTanaka, Hiroki. "Zeeman Splitting Caused by Localized sp-d Exchange Interaction in Ferromagnetic GaMnAs Observed by Magneto-Optical Characterization". Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1441982108.
Pełny tekst źródłaVallobra, Pierre. "Effects of interfacial interactions on optical switching in magnetic heterostructures". Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0015/document.
Pełny tekst źródłaDuring the last 20 years, nanomagnetism has attracted a growing interest in the scientific community due to its multiple applications for magnetic memories. At the nanometer scale, many of the properties of the magnetic materials arise from their interfaces with other materials (magnetic or non-magnetic). This explains the omnipresence of heterostructures composed of several layers of thicknesses in the range of the nanometer in the field of nanomagnetism. In the heterostructures we study, those interfacial properties are the exchange bias, the Dzyaloshinskii-Moriya interaction, the perpendicular magnetic anisotropy and the interlayer exchange between two ferromagnetic layers. First we study the modification of the exchange bias field in a [Pt/Co]xN/IrMn bilayer when we expose it to laser pulses of a femtosecond circularly polarized light. We demonstrate that the final exchange bias field after laser pulses results from the magnetic configuration of the [Pt/Co]xN multilayer. We then study the conditions required for a helicity-dependent all optical switching of a synthetic ferromagnetic material composed of a CoFeB /Pt /CoFeB and a Co ferromagnetic layers coupled antiferromagnetically and conclude that the key factors that drive the switching of the total magnetization are the Curie temperatures of both layers. We focused also on the field-driven propagation of Néel domain walls of the same chirality stabilized by the Dzyaloshinskii-Moriya interaction in [Pt/Co/Ni]xN multilayers. We finally demonstrated the possibility to generate skyrmionic bubbles with the femtosecond laser
Goryan, Alexander S. "Nuclear magnetic resonance studies on bentonite in complex mixed systems". Licentiate thesis, Luleå tekniska universitet, Industriell miljö- och processteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18463.
Pełny tekst źródłaGodkänd; 2012; 20121011 (alegor); LICENTIATSEMINARIUM Ämne: Gränsytors kemi/Chemistry of Interfaces Examinator: Professor Oleg N. Antzutkin, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Professor emeritus Willis Forsling, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Tid: Onsdag den 5 december 2012 kl 13.00 Plats: C305, Luleå tekniska universitet
Kumar, Deepak. "Thin film growth by combinatorial epitaxy for electronic and energy applications". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC255.
Pełny tekst źródłaTransition-metal oxides with an ABO3 perovskite structure exhibit strongly entangled structural and electronic degrees of freedom and thus, one expects to unveil exotic phases and properties by acting on the lattice through various external stimuli. The epitaxial strain engineering in oxide thin films is an important mean to tailor the crystal lattice distortion through cooperative Jahn Teller effect. Using the Jahn Teller active PrVO3 thin films as a model system, the structural correlation with the magnetism is established. We impose different strength of epitaxial strain in PrVO3 thin films via different means, such as, using various commercially available single crystal substrates, film thickness, substrates with different crystal surface orientations, etcetera. As a result, new and hidden phases that are absent in the bulk compound, begin to appear. Namely, the compressive strain in PrVO3 films enhances the super-exchange interaction leading to an increased antiferromagnetic Neel temperature, a strong magnetic anisotropy in PrVO3 thin films grown on (001)-, (110)- and (111)-oriented SrTiO3 substrates, are few examples
Smith, Craig David. "Synthesis and properties of novel free radicals with potential as molecular magnetic materials and spin probes". Thesis, Queensland University of Technology, 2002.
Znajdź pełny tekst źródłaMa, Xiaozhou. "Synthesis and study of redox-active molecular nanomagnets". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0128.
Pełny tekst źródłaThe thesis work aims at the synthesis and study of redox-active magnetic molecules as prototypes towards the design of molecule-based magnets with high operating temperature, a prerequisite for technological applications. The redox activity is provided by the bridging ligand, which could tune and sometimes enhance significantly the magnetic properties of the resulting molecular architectures. After an introduction chapter presenting the latest developments in the field of molecule-based magnetic materials, special emphasis is given on the importance of having large magnetic exchange coupling J between the spin carriers to reach high operating temperature. This is supported by a bibliographic study concerning two emerging approach to enhance J values in polynuclear compounds. Chapter 2 presents the syntheses and characterizations of dinuclear M(II) complexes [M2(tphz)(tpy)2](PF6)n (M = Co or Ni; n = 4, 3, 2, tphz = tetrapyridophenazine) built by using strongly complexing, redox-active bridging ligand (tphz), and terpyridine (tpy) as capping ligands. The extensive studies on these compounds show that the redox-active bridging ligand can be used as a tool to promote spin delocalization, high spin complexes and magnetic multi-switchability. Importantly the work reveals the key parameters towards building strongly magnetically coupled systems. As a continuation research of finding the best magnetic components for the rational design of high temperature molecule-based magnets, Chapter 3 describes a new series of [Cr(III)(tphz)(tpy)](CF3SO3)n (n = 3, 2, 1) mononuclear complexes. Both the mono and doubly-reduced complexes show remarkable magnetic interactions between metal center and radical ligands, which could further act as interesting magnetic units for the design of higher nuclearities magnets
Książki na temat "Magnetic Exchange Interaction"
Tang, Chiu Chung. The magnetic exchange interactions in chromium chalcogenide spinels. Birmingham: Aston University. Departmentof Electrical Engineering and Applied Physics, 1988.
Znajdź pełny tekst źródłaSaitoh, E., i K. Ando. Exchange spin current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0003.
Pełny tekst źródłaLaunay, Jean-Pierre, i Michel Verdaguer. The localized electron: magnetic properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0002.
Pełny tekst źródłaKimura, T. Introduction of spin torques. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0019.
Pełny tekst źródłaLaunay, Jean-Pierre, i Michel Verdaguer. Electrons in Molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.001.0001.
Pełny tekst źródłaLaunay, Jean-Pierre, i Michel Verdaguer. The moving electron: electrical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0003.
Pełny tekst źródłaSuzuki, Y. Spin torque in uniform magnetization. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0020.
Pełny tekst źródłaGlazov, M. M. Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.
Pełny tekst źródłaEriksson, Olle, Anders Bergman, Lars Bergqvist i Johan Hellsvik. Aspects of the Solid State. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0002.
Pełny tekst źródłaCao, Gang, i Lance DeLong. Physics of Spin-Orbit-Coupled Oxides. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.001.0001.
Pełny tekst źródłaCzęści książek na temat "Magnetic Exchange Interaction"
Sigov, Alexander S. "Frustrations of Exchange Interaction". W Multilayer Magnetic Nanostructures, 19–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6246-2_2.
Pełny tekst źródłaHernando, A. "Exchange Interaction in Multiphase Systems". W Magnetic Hysteresis in Novel Magnetic Materials, 609–18. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_65.
Pełny tekst źródłaBlundell, Stephen J. "Concepts in Magnetism". W Springer Proceedings in Physics, 39–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64623-3_2.
Pełny tekst źródłaMerkulov, I. A., i A. V. Rodina. "Exchange Interaction Between Carriers and Magnetic Ions in Quantum Size Heterostructures". W Introduction to the Physics of Diluted Magnetic Semiconductors, 65–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15856-8_3.
Pełny tekst źródłaZhang, L. X., D. V. Melnikov i J. P. Leburton. "Exchange Interaction and Stability Diagram of Coupled Quantum Dots in Magnetic Fields". W Physical Models for Quantum Dots, 275–88. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-16.
Pełny tekst źródłaSkomski, Ralph. "Magnetic Exchange Interactions". W Handbook of Magnetism and Magnetic Materials, 1–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_2-1.
Pełny tekst źródłaSkomski, Ralph. "Magnetic Exchange Interactions". W Handbook of Magnetism and Magnetic Materials, 53–102. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_2.
Pełny tekst źródłaLiu, L. M., W. Chen, M. G. Zhu, L. Y. Nie, A. J. Li i J. J. Hu. "Exchange-Coupling Interaction and Effective Anisotropy in Two-Phase Nanocomposite Permanent Magnetic Materials". W Materials Science Forum, 2173–76. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.2173.
Pełny tekst źródładu Trémolet de Lacheisserie, É., D. Gignoux i M. Schlenker. "Exchange Interactions". W Magnetism, 311–20. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-23062-7_9.
Pełny tekst źródłaMichelini, F., N. Nègre, G. Fishman, M. Goiran, J. Sadowski, E. Vanelle i S. Askénasy. "sp-d exchange interaction in GaMnAs investigated by resonant Kerr effect under high magnetic field". W Springer Proceedings in Physics, 238–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_107.
Pełny tekst źródłaStreszczenia konferencji na temat "Magnetic Exchange Interaction"
Savchuk, A., M. Gavaleshko i A. Lyakbovich. "Magnetooptical effects induced by exchange interaction In diluted magnetic semiconductors". W 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642465.
Pełny tekst źródłaFukunaga, H., J. Kuma i Y. Kanai. "Effect of strength of intergrain exchange interaction on magnetic properties of nanocomposite magnets". W IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837703.
Pełny tekst źródłaMatsumura, Takeshi, i Akira Ochiai. "Orbital Dependent Magnetic Exchange Interaction in CeXc (Xc = S, Se, Te)". W Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011154.
Pełny tekst źródłaTsai, M. S., P. H. Lin, C. W. Shih, M. J. Lee, C. W. Huang, N. Y. Jih, D. H. Wei i B. Y. Wang. "Effects of Interfacial Exchange Interaction on the Antiferromagnet-Induced Perpendicular Magnetic Anisotropy". W 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479686.
Pełny tekst źródłaZhang, L. X., D. V. Melnikov i J. P. Leburton. "Stability diagram and exchange interaction in coupled quantum dots in magnetic fields". W Defense and Security Symposium, redaktorzy Eric J. Donkor, Andrew R. Pirich i Howard E. Brandt. SPIE, 2006. http://dx.doi.org/10.1117/12.666043.
Pełny tekst źródłaNakamura, Takeshi, i Takayuki Ishida. "Magnetic exchange interaction in gadolinium(III) complex having aliphatic nitroxide radical TEMPO". W PROGRESS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING PROCEEDINGS. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4941215.
Pełny tekst źródłaShvachko, Y., D. Starichenko, A. Korolev, V. Ustinov, D. Boukhvalov, V. Irkhin, O. Khudina i in. "Magnetic Properties of Ni(II) Complexes of (hydrazone)imine 1,2,3-triketones: Intramolecular Exchange Interaction". W 3rd France-Russia Seminar. Les Ulis, France: EDP Sciences, 2007. http://dx.doi.org/10.1051/names2007036.
Pełny tekst źródłaYang, Tzuen Rong, i MiRa Kim. "Exchange interaction of 3D transition metal impurity with band electrons in diluted magnetic semiconductors". W Photonics Taiwan, redaktorzy Yan-Kuin Su i Pallab Bhattacharya. SPIE, 2000. http://dx.doi.org/10.1117/12.392110.
Pełny tekst źródłaSénès ast, M. "Exciton Spin Manipulation In InAs/GaAs Quantum Dots: Exchange Interaction And Magnetic Field Effects". W PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994618.
Pełny tekst źródłaAHMED, M. A., I. S. AHMED FARAG i NABILAH M. HELMY. "MAGNETIC SUPER-EXCHANGE INTERACTION AND STRUCTURE OF COPPER(II) 1, 4 BUTYLENEDIAMINE TETRACHLORIDE [NH3(CH2)4H3N]CuCl4 SINGLE CRYSTAL". W Proceedings of the Third International Conference on Modern Trends in Physics Research. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814317511_0007.
Pełny tekst źródłaRaporty organizacyjne na temat "Magnetic Exchange Interaction"
Fernando, P. U. Ashvin Iresh, Gilbert Kosgei, Matthew Glasscott, Garrett George, Erik Alberts i Lee Moores. Boronic acid functionalized ferrocene derivatives towards fluoride sensing. Engineer Research and Development Center (U.S.), lipiec 2022. http://dx.doi.org/10.21079/11681/44762.
Pełny tekst źródłaRoy, Beas. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions. Office of Scientific and Technical Information (OSTI), grudzień 2014. http://dx.doi.org/10.2172/1227288.
Pełny tekst źródła