Artykuły w czasopismach na temat „Macromolecular crowding agents”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 38 najlepszych artykułów w czasopismach naukowych na temat „Macromolecular crowding agents”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
De Pieri, Andrea, Shubhasmin Rana, Stefanie Korntner i Dimitrios I. Zeugolis. "Seaweed polysaccharides as macromolecular crowding agents". International Journal of Biological Macromolecules 164 (grudzień 2020): 434–46. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.087.
Pełny tekst źródłaLee, Hong Bok, Anh Cong, Hannah Leopold, Megan Currie, Arnold J. Boersma, Erin D. Sheets i Ahmed A. Heikal. "Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments". Physical Chemistry Chemical Physics 20, nr 37 (2018): 24045–57. http://dx.doi.org/10.1039/c8cp03873b.
Pełny tekst źródłaStepanenko, Olesya V., Olga V. Stepanenko, Irina M. Kuznetsova i Konstantin K. Turoverov. "The unfolding of iRFP713 in a crowded milieu". PeerJ 7 (8.04.2019): e6707. http://dx.doi.org/10.7717/peerj.6707.
Pełny tekst źródładel Álamo, Marta, Germán Rivas i Mauricio G. Mateu. "Effect of Macromolecular Crowding Agents on Human Immunodeficiency Virus Type 1 Capsid Protein Assembly In Vitro". Journal of Virology 79, nr 22 (15.11.2005): 14271–81. http://dx.doi.org/10.1128/jvi.79.22.14271-14281.2005.
Pełny tekst źródłaGnutt, David, i Simon Ebbinghaus. "The macromolecular crowding effect – from in vitro into the cell". Biological Chemistry 397, nr 1 (1.01.2016): 37–44. http://dx.doi.org/10.1515/hsz-2015-0161.
Pełny tekst źródłaVweza, Alick-O., Chul-Gyu Song i Kil-To Chong. "Liquid–Liquid Phase Separation in the Presence of Macromolecular Crowding and State-Dependent Kinetics". International Journal of Molecular Sciences 22, nr 13 (22.06.2021): 6675. http://dx.doi.org/10.3390/ijms22136675.
Pełny tekst źródłaZhou, Huan-Xiang. "Effect of mixed macromolecular crowding agents on protein folding". Proteins: Structure, Function, and Bioinformatics 72, nr 4 (27.05.2008): 1109–13. http://dx.doi.org/10.1002/prot.22111.
Pełny tekst źródłaBiswas, Saikat, i Pramit K. Chowdhury. "Unusual domain movement in a multidomain protein in the presence of macromolecular crowders". Physical Chemistry Chemical Physics 17, nr 30 (2015): 19820–33. http://dx.doi.org/10.1039/c5cp02674a.
Pełny tekst źródłaZhang, Chen, Fang Li, Si-Xi Wang, Zhao-Sheng Liu i Haji Akber Aisa. "Molecularly imprinted polymers prepared using a porogenic solvent of an ionic liquid and a macromolecular crowding agent and their application in purification of oleanic acid". Analytical Methods 7, nr 24 (2015): 10256–65. http://dx.doi.org/10.1039/c5ay01960e.
Pełny tekst źródłaKoch, Leon, Roland Pollak, Simon Ebbinghaus i Klaus Huber. "A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo". Biosensors 13, nr 7 (8.07.2023): 720. http://dx.doi.org/10.3390/bios13070720.
Pełny tekst źródłaChristopoulou, Natalia-Maria, Despina P. Kalogianni i Theodore K. Christopoulos. "Macromolecular crowding agents enhance the sensitivity of lateral flow immunoassays". Biosensors and Bioelectronics 218 (grudzień 2022): 114737. http://dx.doi.org/10.1016/j.bios.2022.114737.
Pełny tekst źródłaRosin, Christopher, Paul Hendrik Schummel i Roland Winter. "Cosolvent and crowding effects on the polymerization kinetics of actin". Physical Chemistry Chemical Physics 17, nr 13 (2015): 8330–37. http://dx.doi.org/10.1039/c4cp04431b.
Pełny tekst źródłaLin, Szu-Ning, Gijs J. L. Wuite i Remus T. Dame. "Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU". International Journal of Molecular Sciences 21, nr 24 (15.12.2020): 9553. http://dx.doi.org/10.3390/ijms21249553.
Pełny tekst źródłaSu, Wan-Chih, Douglas L. Gettel, Morgan Chabanon, Padmini Rangamani i Atul N. Parikh. "Pulsatile Gating of Giant Vesicles Containing Macromolecular Crowding Agents Induced by Colligative Nonideality". Journal of the American Chemical Society 140, nr 2 (5.01.2018): 691–99. http://dx.doi.org/10.1021/jacs.7b10192.
Pełny tekst źródłaChristiansen, Alexander, Qian Wang, Margaret S. Cheung i Pernilla Wittung-Stafshede. "Effects of macromolecular crowding agents on protein folding in vitro and in silico". Biophysical Reviews 5, nr 2 (19.02.2013): 137–45. http://dx.doi.org/10.1007/s12551-013-0108-0.
Pełny tekst źródłaRowe, Ian, Andriy Anishkin, Kishore Kamaraju, Kenjiro Yoshimura i Sergei Sukharev. "The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding". Journal of General Physiology 143, nr 5 (28.04.2014): 543–57. http://dx.doi.org/10.1085/jgp.201311114.
Pełny tekst źródłaMukherjee, Sanjib K., Saurabh Gautam, Saikat Biswas, Jayanta Kundu i Pramit K. Chowdhury. "Do Macromolecular Crowding Agents Exert Only an Excluded Volume Effect? A Protein Solvation Study". Journal of Physical Chemistry B 119, nr 44 (23.10.2015): 14145–56. http://dx.doi.org/10.1021/acs.jpcb.5b09446.
Pełny tekst źródłaDey, Pinki, i Arnab Bhattacherjee. "Disparity in anomalous diffusion of proteins searching for their target DNA sites in a crowded medium is controlled by the size, shape and mobility of macromolecular crowders". Soft Matter 15, nr 9 (2019): 1960–69. http://dx.doi.org/10.1039/c8sm01933a.
Pełny tekst źródłaFerreira, L. A., V. N. Uversky i B. Y. Zaslavsky. "Role of solvent properties of water in crowding effects induced by macromolecular agents and osmolytes". Molecular BioSystems 13, nr 12 (2017): 2551–63. http://dx.doi.org/10.1039/c7mb00436b.
Pełny tekst źródłaShahid, Sumra, Faizan Ahmad, Md Imtaiyaz Hassan i Asimul Islam. "Mixture of Macromolecular Crowding Agents Has a Non-additive Effect on the Stability of Proteins". Applied Biochemistry and Biotechnology 188, nr 4 (9.02.2019): 927–41. http://dx.doi.org/10.1007/s12010-019-02972-9.
Pełny tekst źródłaPaudel, Bishnu P., Erica Fiorini, Richard Börner, Roland K. O. Sigel i David S. Rueda. "Optimal molecular crowding accelerates group II intron folding and maximizes catalysis". Proceedings of the National Academy of Sciences 115, nr 47 (5.11.2018): 11917–22. http://dx.doi.org/10.1073/pnas.1806685115.
Pełny tekst źródłaRusinga, Farai I., i David D. Weis. "Automated Strong Cation-Exchange Cleanup To Remove Macromolecular Crowding Agents for Protein Hydrogen Exchange Mass Spectrometry". Analytical Chemistry 89, nr 2 (23.12.2016): 1275–82. http://dx.doi.org/10.1021/acs.analchem.6b04057.
Pełny tekst źródłaLi, Quan-Fu, Yan-Mei Zhan, Yong-Gang Zhong, Bo Zhang i Chang-Qing Ge. "Macromolecular Crowding Agents-Assisted Imprinted Polymers For Analysis Of Glycocholic Acid In Human Plasma And Urine". Biomedical Chromatography 30, nr 11 (20.05.2016): 1706–13. http://dx.doi.org/10.1002/bmc.3737.
Pełny tekst źródłaShahid, Sumra, Ikramul Hasan, Faizan Ahmad, Md Imtaiyaz Hassan i Asimul Islam. "Carbohydrate-Based Macromolecular Crowding-Induced Stabilization of Proteins: Towards Understanding the Significance of the Size of the Crowder". Biomolecules 9, nr 9 (12.09.2019): 477. http://dx.doi.org/10.3390/biom9090477.
Pełny tekst źródłaAumiller, William M., Bradley W. Davis, Emmanuel Hatzakis i Christine D. Keating. "Interactions of Macromolecular Crowding Agents and Cosolutes with Small-Molecule Substrates: Effect on Horseradish Peroxidase Activity with Two Different Substrates". Journal of Physical Chemistry B 118, nr 36 (26.08.2014): 10624–32. http://dx.doi.org/10.1021/jp506594f.
Pełny tekst źródłaAmzallag, Emmanuel, i Eran Hornstein. "Crosstalk between Biomolecular Condensates and Proteostasis". Cells 11, nr 15 (4.08.2022): 2415. http://dx.doi.org/10.3390/cells11152415.
Pełny tekst źródłaCaterino, Tamara L., i Jeffrey J. Hayes. "Structure of the H1 C-terminal domain and function in chromatin condensationThis paper is one of a selection of papers published in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process." Biochemistry and Cell Biology 89, nr 1 (luty 2011): 35–44. http://dx.doi.org/10.1139/o10-024.
Pełny tekst źródłaChang, Jui-Yoa, Bao-Yun Lu i Por-Hsiung Lai. "Oxidative folding of hirudin in human serum". Biochemical Journal 394, nr 1 (27.01.2006): 249–57. http://dx.doi.org/10.1042/bj20051660.
Pełny tekst źródłaShahid, Sumra, Faizan Ahmad, Md Imtaiyaz Hassan i Asimul Islam. "Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: An insight into stability-activity trade-off". Archives of Biochemistry and Biophysics 584 (październik 2015): 42–50. http://dx.doi.org/10.1016/j.abb.2015.08.015.
Pełny tekst źródłaVogel, Kristina, Thorsten Greinert, Monique Reichard, Christoph Held, Hauke Harms i Thomas Maskow. "Thermodynamics and Kinetics of Glycolytic Reactions. Part II: Influence of Cytosolic Conditions on Thermodynamic State Variables and Kinetic Parameters". International Journal of Molecular Sciences 21, nr 21 (25.10.2020): 7921. http://dx.doi.org/10.3390/ijms21217921.
Pełny tekst źródłaWerner, Tony E. R., Istvan Horvath i Pernilla Wittung-Stafshede. "Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein". QRB Discovery 2 (2021). http://dx.doi.org/10.1017/qrd.2020.17.
Pełny tekst źródłaOkamoto, Debora N., Lilian C. G. Oliveira, Marcia Y. Kondo, Maria H. S. Cezari, Zoltán Szeltner, Tünde Juhász, Maria A. Juliano, László Polgár, Luiz Juliano i Iuri E. Gouvea. "Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition". Biological Chemistry 391, nr 12 (1.12.2010). http://dx.doi.org/10.1515/bc.2010.145.
Pełny tekst źródłaLecinski, Sarah, Jack W. Shepherd, Kate Bunting, Lara Dresser, Steven D. Quinn, Chris MacDonald i Mark C. Leake. "Correlating viscosity and molecular crowding with fluorescent nanobeads and molecular probes: in vitro and in vivo". Interface Focus 12, nr 6 (14.10.2022). http://dx.doi.org/10.1098/rsfs.2022.0042.
Pełny tekst źródłaLouisthelmy, Rebecca, Brycen M. Burke i R. Chase Cornelison. "Brain cancer cell-derived matrices and effects on astrocyte migration". Cells Tissues Organs, 15.02.2022. http://dx.doi.org/10.1159/000522609.
Pełny tekst źródłaHagedoorn, Peter-Leon. "Isothermal Titration Calorimetry in Biocatalysis". Frontiers in Catalysis 2 (10.05.2022). http://dx.doi.org/10.3389/fctls.2022.906668.
Pełny tekst źródłaSiraj, Seerat, Daraksha Yameen, Anas Shamsi, Faizya Khan, Asimul Islam i Mohammad Mahfuzul Haque. "Interaction of Thioflavin T (ThT) and 8-anilino-1-naphthalene sulfonic acid (ANS) with macromolecular crowding agents and their monomers: Biophysical analysis using in vitro and computational approaches". Journal of Molecular Liquids, styczeń 2023, 121270. http://dx.doi.org/10.1016/j.molliq.2023.121270.
Pełny tekst źródłaBonucci, Alessio, Martina Palomino-Schätzlein, Paula Malo de Molina, Arantxa Arbe, Roberta Pierattelli, Bruno Rizzuti, Juan L. Iovanna i José L. Neira. "Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1". Frontiers in Molecular Biosciences 8 (5.07.2021). http://dx.doi.org/10.3389/fmolb.2021.684622.
Pełny tekst źródłaKöhn, Birgit, i Michael Kovermann. "All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy". Nature Communications 11, nr 1 (13.11.2020). http://dx.doi.org/10.1038/s41467-020-19616-w.
Pełny tekst źródła