Gotowa bibliografia na temat „MACHINING VARIABLES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „MACHINING VARIABLES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "MACHINING VARIABLES"
Neto, João Cirilo da Silva, Evaldo Malaquias da Silva i Marcio Bacci da Silva. "Intervening variables in electrochemical machining". Journal of Materials Processing Technology 179, nr 1-3 (październik 2006): 92–96. http://dx.doi.org/10.1016/j.jmatprotec.2006.03.105.
Pełny tekst źródłaChuri, N. J., Z. J. Pei i C. Treadwell. "ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY: EFFECTS OF MACHINING VARIABLES". Machining Science and Technology 10, nr 3 (wrzesień 2006): 301–21. http://dx.doi.org/10.1080/10910340600902124.
Pełny tekst źródłaCong, W. L., Z. J. Pei, Timothy Deines, Q. G. Wang i Clyde Treadwell. "Rotary Ultrasonic Machining of stainless steels: empirical study of machining variables". International Journal of Manufacturing Research 5, nr 3 (2010): 370. http://dx.doi.org/10.1504/ijmr.2010.033472.
Pełny tekst źródłaNandhakumar, S., S. Sathish Kumar i K. Sakthivelu. "Optimization of Machining Variables in Electric Discharge Machining Using Stainless Steel 317 in Full Factorial Method". Mechanics and Mechanical Engineering 22, nr 1 (12.08.2020): 105–18. http://dx.doi.org/10.2478/mme-2018-0010.
Pełny tekst źródłaFrumuşanu, Gabriel, i Alexandru Epureanu. "HOLISTIC MONITORING OF MACHINING SYSTEM". International Journal of Modern Manufacturing Technologies 13, nr 3 (25.12.2021): 45–53. http://dx.doi.org/10.54684/ijmmt.2021.13.3.45.
Pełny tekst źródłaMehrvar, Ali, Ali Basti i Ali Jamali. "Inverse modelling of electrochemical machining process using a novel combination of soft computing methods". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, nr 17 (2.04.2020): 3436–46. http://dx.doi.org/10.1177/0954406220916495.
Pełny tekst źródłaChainawakul, Adirake, Koji Teramoto i Hiroki Matsumoto. "Statistical Modelling of Machining Error for Model-Based Elastomer End-Milling". International Journal of Automation Technology 15, nr 6 (5.11.2021): 852–59. http://dx.doi.org/10.20965/ijat.2021.p0852.
Pełny tekst źródłaPaul, Lijo, i S. Hiremath Somashekhar. "Effect of Process Parameters on Heat Affected Zone in Micro Machining of Borosilicate Glass Using μ-ECDM Process". Applied Mechanics and Materials 592-594 (lipiec 2014): 224–28. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.224.
Pełny tekst źródłaPradhan, Mohan Kumar, i Chandan Kumar Biswas. "Response Surface Analysis of EDMED Surfaces of AISI D2 Steel". Advanced Materials Research 264-265 (czerwiec 2011): 1960–65. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.1960.
Pełny tekst źródłaRehman, Gulfam Ul, Syed Husain Imran Jaffery, Mushtaq Khan, Liaqat Ali, Ashfaq Khan i Shahid Ikramullah Butt. "Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy (Ti-6Al-4V)". Mechanical Sciences 9, nr 2 (20.07.2018): 231–43. http://dx.doi.org/10.5194/ms-9-231-2018.
Pełny tekst źródłaRozprawy doktorskie na temat "MACHINING VARIABLES"
Duong, Tan Quang. "Commande à gains variables de l’erreur de contour pour l’usinage multiaxes". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC009/document.
Pełny tekst źródłaThe advanced machining techniques are always the backbone of the manufacturing industries. Among such techniques, high speed machining is the main subject of this PhD thesis. Indeed, the main objective of this work is to improve the contouring accuracy in multi-axis high speed machining of free-form surfaces, directly acting inside the axis control loops. To do that, a first step aims at elaborating a strategy to estimate as accurately as possible the contour error for different tool configurations. This contour error is then minimized by means of an off-line adaptation for a given profile of the proportional and feedforward gains of the axis position loop controllers. This gain adaptation is performed via an optimization algorithm that considers a nonlinear model of the machine behaviour, in particular including friction related to each axis. This optimization leading to the controllers gains takes into account several constraints, including the axis kinematic (velocity, acceleration and jerk) limitations, the stability of the controlled loops and the motor current limits. Finally, to help their integration within an industrial framework, the developed strategies can be directly implemented in commercial CNC, by exploiting all possibilities of the classical control structure of axis drive
Hussein, Wessam Mahmoud Elbestawi Mohamed A. A. Veldhuis Stephen C. "Machining process monitoring using multivariate latent variable methods". *McMaster only, 2007.
Znajdź pełny tekst źródłaNagaraj, Arjun. "ANALYSIS OF SURFACE INTEGRITY IN MACHINING OF CFRP UNDER DIFFERENT COOLING CONDITIONS". UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/142.
Pełny tekst źródłaLaforce, Francois. "Zlepšení výroby aeronautické součásti". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229843.
Pełny tekst źródłaYADAV, MANISH KUMAR. "EFFECTS OF MACHINING VARIABLES ON SURFACE ROUGHNESS IN WIRE-EDM". Thesis, 2015. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14366.
Pełny tekst źródłaYADAV, MANEESH KUMAR. "EFFECTS OF MACHINING VARIABLES ON SURFACE ROUGHNESS IN WIRE-EDM OF AISI D3". Thesis, 2011. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19702.
Pełny tekst źródłaPraharaj, Ami t. Kumar. "Simulation of Electrolyte Flow Pattern and Variation of MRR With Machining Variables in ECM for L-shaped Tool using CFD". Thesis, 2018. http://ethesis.nitrkl.ac.in/9702/1/2018_MT_216ME2374_AKPraharaj_Simulation.pdf.
Pełny tekst źródłaChen, Hsin-Hung, i 陳信宏. "On the design of tool profiles for machining line generated variable pitch helicoids". Thesis, 1993. http://ndltd.ncl.edu.tw/handle/22367187145909021800.
Pełny tekst źródłaSheng, Yu-Chun, i 盛玉君. "Studies on the Numerical Control Programming for Machining Variable Pitch Lead Screw on Four-AXIS MACHINE". Thesis, 1993. http://ndltd.ncl.edu.tw/handle/38829237727428045433.
Pełny tekst źródła國立成功大學
機械工程研究所
81
In this thesis , two kinds of tool path generation methods are developed for machining Variable Pitch Lead Screw with four cylindrical meshing elements (V.P.L.S.) on four-axis numerical control machine . The first method employs end-mill cutter , According to the geometry of V.P.L.S. mechanism , the machine tool settings is calculated and the tool path is generated , A 4-axis machine center with angle head attachment is used for the machining of the screw The second method employs ball-end mill cutter, Through the coordinate transformation , the surface normal vector operation and the tool offset calculation , this new method combined surface generating with surface sculpturing for the V.P.L.S. surface . Finally , an example for N C milling of Variable Pitch Lead Screw with four cylindrical meshing elements is presented . The results show that the mathematical errors of V.P.L.S. surface can be controlled within tolerance by the proposed methods .
HONG, CHING-HUA, i 洪清華. "Application of Deep Learning to the Intelligent Control of Wire Electrical Discharge Machining of Variable Thickness Workpiece". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/72npak.
Pełny tekst źródła國立臺灣大學
機械工程學研究所
107
The purpose of this study is to establish a deep learning intelligent control system that can combine processing efficiency, stability and kerf consistency in variable thickness processing. In the past, the wire electrical discharge machining Control for variable thickness workpiece, and focus on improving processing efficiency and stability. The research on the problem that the kerf difference affects the accuracy of the variable thickness workpiece is relatively lacking. The true straightness is not good after processing, and it may lead to error fitting of future workpieces. Deep Learning is used to automatically extract features that are representative of data characteristics by transforming data through multiple nonlinear hidden layers, that is, from a variety of discharge signals that are highly correlated with the thickness of the workpiece. The recessive feature function has strong robustness and is not sensitive to noise or some of extreme values, so the thickness of the workpiece can be accurately known. The second stage is the setting of processing parameters. In the past, it relied on experienced operators. Therefore, the deep learning technique was used again to normalize the hidden features of the input data, so that the model output is like a experience operator to determination what the parameters should be setting. Intelligent control strategy not only reduce the operator''s technical threshold, but also achieve a goal of uniform material removal rate during the trim cutting and reduce the occurrence of line marks. The experimental results show that the deep learning workpiece thickness online estimation system established in this study which can accurately estimate the thickness of the workpiece, and the processing parameter intelligent control system can adjust the discharge TOFF and TAOFF according to different workpiece thicknesses. The discharge frequency is controlled within the desired value, and the processing efficiency can be effectively improved when the thickness of the workpiece is thin to thick; when the thickness of the workpiece is thick to thin, the feed rate will be accelerated and the wire is broken by discharge concentration phenomenon. On the other hand, the strategy of this study effectively balances the kerf uniformity, that is, the average value and variation of the kerf of each class thickness can be effectively maintained within a stable value when processing different workpiece thicknesses.
Części książek na temat "MACHINING VARIABLES"
Davis, Rahul, Abhishek Singh, Tanya Singh, Subham Chhetri, V. Vikali Sumi, Alomi P. Zhimomi i Stephen Dilip Mohapatra. "Optimization of Input Control Variables in Electric Discharge Machining of Inconel-718". W Lecture Notes in Mechanical Engineering, 541–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2696-1_53.
Pełny tekst źródłaThellaputta, Gopala Rao, P. S. C. Bose, C. S. P. Rao i C. S. Raju. "Effect of Machining Variables on Cutting Temperature While Rotary Milling of Inconel 625". W Lecture Notes on Multidisciplinary Industrial Engineering, 27–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7643-6_3.
Pełny tekst źródłaSonawane, Sachin Ashok, i Akshay P. Pawar. "Effect of Cutting Variables of End Milling Process on Surface Roughness and Machining Vibrations". W Techno-Societal 2018, 661–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16962-6_67.
Pełny tekst źródłaSanthi Priya, P., Subramanyam Pavuluri i Yogesh Madaria. "Experimental Investigations of Process Variables on Wire Electrical Discharge Machining (WEDM) of AISI 52100 Steel". W Lecture Notes in Mechanical Engineering, 571–80. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7909-4_53.
Pełny tekst źródłaPramanik, D., A. S. Kuar i D. Bose. "Effects of Wire EDM Machining Variables on Material Removal Rate and Surface Roughness of Al 6061 Alloy". W Renewable Energy and its Innovative Technologies, 231–41. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2116-0_19.
Pełny tekst źródłaSharma, Khushboo, Jai Kishan Sambharia i Alok Khatri. "Optimization of Process Variables in Plasma Arc Machining of Inconel-718 Alloy Using Taguchi with Grey Relational Analysis". W Lecture Notes in Mechanical Engineering, 37–58. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9117-4_4.
Pełny tekst źródłaDas, Sudhansu Ranjan, i Anshuman Das. "Study the Influences of Various Input Variables on Material Removal Rate During μEDM Machining of Super Alloy Material". W Lecture Notes in Mechanical Engineering, 681–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4606-6_62.
Pełny tekst źródłaMadhavarao, S., Ravi Varma Penmetsa, Ch Rama Bhadri Raju i Hema T. Raju Gottumukkala. "Optimization of Process Variables in Abrasive Water Jet Machining of Nimonic C-263 Super Alloy Using Taguchi Method". W Advances in Sustainability Science and Technology, 167–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4321-7_15.
Pełny tekst źródłaYadav, Rajat, i Pradeep Kumar Singh. "Variation in Unevenness of Surface in Machining Ti–6Al–4 V Due to Change in Key Variables of Micro-Electric Discharge Milling Process". W Lecture Notes in Mechanical Engineering, 1083–91. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2188-9_99.
Pełny tekst źródłaNandurkar, Santosh, Sachin Kulkarni, Tushar Hawal, Niranjan Pattar i Nagaraj Kelageri. "Investigation of Effect of EDM Process Variables on Material Removal Rate and Tool Wear Rate in Machining of EN19 Steel Using Response Surface Methodology". W Lecture Notes in Mechanical Engineering, 71–82. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2278-6_7.
Pełny tekst źródłaStreszczenia konferencji na temat "MACHINING VARIABLES"
Cong, W. L., Q. Feng, Z. J. Pei, T. W. Deines i C. Treadwell. "Dry Machining of Carbon Fiber Reinforced Plastic Composite by Rotary Ultrasonic Machining: Effects of Machining Variables". W ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50116.
Pełny tekst źródłaChen, Xiaoxu, Hui Wang, Yingbin Hu, Dongzhe Zhang, Weilong Cong i Anthony R. Burks. "Rotary Ultrasonic Machining of CFRP Composites: Effects of Machining Variables on Workpiece Delamination". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-3019.
Pełny tekst źródłaQin, Na, Z. J. Pei i D. M. Guo. "Ultrasonic-Vibration-Assisted Grinding of Titanium: Cutting Force Modeling With Design of Experiments". W ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84325.
Pełny tekst źródłaNing, Fuda, i Weilong Cong. "Rotary Ultrasonic Machining of CFRP: Design of Experiment With a Cutting Force Model". W ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9227.
Pełny tekst źródłaZeng, W. M., Z. C. Li, N. J. Churi, Z. J. Pei i C. Treadwell. "Experimental Investigation Into Rotary Ultrasonic Machining of Alumina". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61700.
Pełny tekst źródłaLo, Chih-Hao, Jun Ni i Jingxia Yuan. "Thermal Sensor Placement Strategy for Machine Error Compensation". W ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0355.
Pełny tekst źródłaKumanotani, Maho, Hitoshi Kusino i Keiichi Nakamoto. "Proposal of a Tool Path Generation Method to Ensure Workpiece Stiffness for Efficient Rough Machining". W JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8543.
Pełny tekst źródłaLee, Cheol W. "Multirate Estimation for the Machining Process Under Multirate Noise". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42187.
Pełny tekst źródłaZhang, Dongzhe, Hui Wang, Yingbin Hu, Xiaoxu Chen, Weilong Cong i Anthony R. Burks. "Rotary Ultrasonic Machining of CFRP Composites: Effects of Carbon Fiber Reinforcement Structure". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-3014.
Pełny tekst źródłaWentz, John E., i Andrew J. Coleman. "Energy Analysis of Machining and Machining Facilities Based on the Micro-Factory Concept". W ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7222.
Pełny tekst źródła