Artykuły w czasopismach na temat „Machines de Boltzmann restreintes”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Machines de Boltzmann restreintes.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Machines de Boltzmann restreintes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Apolloni, B., A. Bertoni, P. Campadelli i D. de Falco. "Asymmetric Boltzmann machines". Biological Cybernetics 66, nr 1 (listopad 1991): 61–70. http://dx.doi.org/10.1007/bf00196453.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lu, Wenhao, Chi-Sing Leung i John Sum. "Analysis on Noisy Boltzmann Machines and Noisy Restricted Boltzmann Machines". IEEE Access 9 (2021): 112955–65. http://dx.doi.org/10.1109/access.2021.3102275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Livesey, M. "Clamping in Boltzmann machines". IEEE Transactions on Neural Networks 2, nr 1 (1991): 143–48. http://dx.doi.org/10.1109/72.80301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Fischer, Asja. "Training Restricted Boltzmann Machines". KI - Künstliche Intelligenz 29, nr 4 (12.05.2015): 441–44. http://dx.doi.org/10.1007/s13218-015-0371-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bojnordi, Mahdi Nazm, i Engin Ipek. "The Memristive Boltzmann Machines". IEEE Micro 37, nr 3 (2017): 22–29. http://dx.doi.org/10.1109/mm.2017.53.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Jeremy, Ke-Thia Yao i Federico Spedalieri. "Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers". Entropy 22, nr 11 (24.10.2020): 1202. http://dx.doi.org/10.3390/e22111202.

Pełny tekst źródła
Streszczenie:
Boltzmann machines have useful roles in deep learning applications, such as generative data modeling, initializing weights for other types of networks, or extracting efficient representations from high-dimensional data. Most Boltzmann machines use restricted topologies that exclude looping connectivity, as such connectivity creates complex distributions that are difficult to sample. We have used an open-system quantum annealer to sample from complex distributions and implement Boltzmann machines with looping connectivity. Further, we have created policies mapping Boltzmann machine variables to the quantum bits of an annealer. These policies, based on correlation and entropy metrics, dynamically reconfigure the topology of Boltzmann machines during training and improve performance.
Style APA, Harvard, Vancouver, ISO itp.
7

Luo, Heng, Ruimin Shen, Changyong Niu i Carsten Ullrich. "Sparse Group Restricted Boltzmann Machines". Proceedings of the AAAI Conference on Artificial Intelligence 25, nr 1 (4.08.2011): 429–34. http://dx.doi.org/10.1609/aaai.v25i1.7923.

Pełny tekst źródła
Streszczenie:
Since learning in Boltzmann machines is typically quite slow, there is a need to restrict connections within hidden layers. However, theresulting states of hidden units exhibit statistical dependencies. Based on this observation, we propose using l1/l2 regularization upon the activation probabilities of hidden units in restricted Boltzmann machines to capture the local dependencies among hidden units. This regularization not only encourages hidden units of many groups to be inactive given observed data but also makes hidden units within a group compete with each other for modeling observed data. Thus, the l1/l2 regularization on RBMs yields sparsity at both the group and the hidden unit levels. We call RBMs trained with the regularizer sparse group RBMs (SGRBMs). The proposed SGRBMs are appliedto model patches of natural images, handwritten digits and OCR English letters. Then to emphasize that SGRBMs can learn more discriminative features we applied SGRBMs to pretrain deep networks for classification tasks. Furthermore, we illustrate the regularizer can also be applied to deep Boltzmann machines, which lead to sparse group deep Boltzmann machines. When adapted to the MNIST data set, a two-layer sparse group Boltzmann machine achieves an error rate of 0.84%, which is, to our knowledge, the best published result on the permutation-invariant version of the MNIST task.
Style APA, Harvard, Vancouver, ISO itp.
8

Decelle, Aurélien, i Cyril Furtlehner. "Gaussian-spherical restricted Boltzmann machines". Journal of Physics A: Mathematical and Theoretical 53, nr 18 (16.04.2020): 184002. http://dx.doi.org/10.1088/1751-8121/ab79f3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Apolloni, B., i D. de Falco. "Learning by parallel Boltzmann machines". IEEE Transactions on Information Theory 37, nr 4 (lipiec 1991): 1162–65. http://dx.doi.org/10.1109/18.87009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

d'Anjou, A., M. Grana, F. J. Torrealdea i M. C. Hernandez. "Solving satisfiability via Boltzmann machines". IEEE Transactions on Pattern Analysis and Machine Intelligence 15, nr 5 (maj 1993): 514–21. http://dx.doi.org/10.1109/34.211473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ticknor, Anthony J., i Harrison H. Barrett. "Optical Implementations In Boltzmann Machines". Optical Engineering 26, nr 1 (1.01.1987): 260116. http://dx.doi.org/10.1117/12.7974015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Amari, S., K. Kurata i H. Nagaoka. "Information geometry of Boltzmann machines". IEEE Transactions on Neural Networks 3, nr 2 (marzec 1992): 260–71. http://dx.doi.org/10.1109/72.125867.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Welling, Max, i Yee Whye Teh. "Approximate inference in Boltzmann machines". Artificial Intelligence 143, nr 1 (styczeń 2003): 19–50. http://dx.doi.org/10.1016/s0004-3702(02)00361-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Prager, R. W., T. D. Harrison i F. Fallside. "Boltzmann machines for speech recognition". Computer Speech & Language 1, nr 1 (marzec 1986): 3–27. http://dx.doi.org/10.1016/s0885-2308(86)80008-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Balzer, Wolfgang, Masanobu Takahashi, Jun Ohta i Kazuo Kyuma. "Weight quantization in Boltzmann machines". Neural Networks 4, nr 3 (styczeń 1991): 405–9. http://dx.doi.org/10.1016/0893-6080(91)90077-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Passos, Leandro Aparecido, i João Paulo Papa. "Temperature-Based Deep Boltzmann Machines". Neural Processing Letters 48, nr 1 (8.09.2017): 95–107. http://dx.doi.org/10.1007/s11063-017-9707-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

KOBAYASHI, M. "Boltzmann Machines with Identified States". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91-A, nr 3 (1.03.2008): 887–90. http://dx.doi.org/10.1093/ietfec/e91-a.3.887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Miasnikof, Pierre, Mohammad Bagherbeik i Ali Sheikholeslami. "Graph clustering with Boltzmann machines". Discrete Applied Mathematics 343 (styczeń 2024): 208–23. http://dx.doi.org/10.1016/j.dam.2023.10.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Liu, Kai, Li Min Zhang i Yong Wei Sun. "Deep Boltzmann Machines Aided Design Based on Genetic Algorithms". Applied Mechanics and Materials 568-570 (czerwiec 2014): 848–51. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.848.

Pełny tekst źródła
Streszczenie:
To resolve the problem of no guidance about how to set the values of numerical meta-parameters and difficulty to achieve optimization of Deep Boltzmann Machines, genetic algorithms are used to develop an automatic optimizing method named GA-RBMs (Genetic Algorithm-Restricted Boltzmann Machines) for this model’s aided design. Based on the Restricted Boltzmann Machines’ features and evaluation function, a genetic algorithm is designed and realizes the global search of satisfied structure. We also initialize the network’s weights to determine the number of visible units and hidden units. The experiments were conducted on MNIST digits handwritten datasets. The results proved that this optimization reduced the dimension of visible units and improved the performance of feature extracted by Deep Boltzmann Machines. The network optimized has good generalization performance and meets the demand of Deep Boltzmann Machines’ aided design.
Style APA, Harvard, Vancouver, ISO itp.
20

Saul, Lawrence, i Michael I. Jordan. "Learning in Boltzmann Trees". Neural Computation 6, nr 6 (listopad 1994): 1174–84. http://dx.doi.org/10.1162/neco.1994.6.6.1174.

Pełny tekst źródła
Streszczenie:
We introduce a large family of Boltzmann machines that can be trained by standard gradient descent. The networks can have one or more layers of hidden units, with tree-like connectivity. We show how to implement the supervised learning algorithm for these Boltzmann machines exactly, without resort to simulated or mean-field annealing. The stochastic averages that yield the gradients in weight space are computed by the technique of decimation. We present results on the problems of N-bit parity and the detection of hidden symmetries.
Style APA, Harvard, Vancouver, ISO itp.
21

Yasuda, Muneki, i Kazuyuki Tanaka. "Approximate Learning Algorithm in Boltzmann Machines". Neural Computation 21, nr 11 (listopad 2009): 3130–78. http://dx.doi.org/10.1162/neco.2009.08-08-844.

Pełny tekst źródła
Streszczenie:
Boltzmann machines can be regarded as Markov random fields. For binary cases, they are equivalent to the Ising spin model in statistical mechanics. Learning systems in Boltzmann machines are one of the NP-hard problems. Thus, in general we have to use approximate methods to construct practical learning algorithms in this context. In this letter, we propose new and practical learning algorithms for Boltzmann machines by using the belief propagation algorithm and the linear response approximation, which are often referred as advanced mean field methods. Finally, we show the validity of our algorithm using numerical experiments.
Style APA, Harvard, Vancouver, ISO itp.
22

Crawford, Daniel, Anna Levit, Navid Ghadermarzy, Jaspreet S. Oberoi i Pooya Ronagh. "Reinforcement learning using quantum Boltzmann machines". Quantum Information and Computation 18, nr 1&2 (luty 2018): 51–74. http://dx.doi.org/10.26421/qic18.1-2-3.

Pełny tekst źródła
Streszczenie:
We investigate whether quantum annealers with select chip layouts can outperform classical computers in reinforcement learning tasks. We associate a transverse field Ising spin Hamiltonian with a layout of qubits similar to that of a deep Boltzmann machine (DBM) and use simulated quantum annealing (SQA) to numerically simulate quantum sampling from this system. We design a reinforcement learning algorithm in which the set of visible nodes representing the states and actions of an optimal policy are the first and last layers of the deep network. In absence of a transverse field, our simulations show that DBMs are trained more effectively than restricted Boltzmann machines (RBM) with the same number of nodes. We then develop a framework for training the network as a quantum Boltzmann machine (QBM) in the presence of a significant transverse field for reinforcement learning. This method also outperforms the reinforcement learning method that uses RBMs.
Style APA, Harvard, Vancouver, ISO itp.
23

Kobayashi, Masaki. "Information geometry of rotor Boltzmann machines". Nonlinear Theory and Its Applications, IEICE 7, nr 2 (2016): 266–82. http://dx.doi.org/10.1587/nolta.7.266.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Yasuda, Muneki, i Tomoyuki Obuchi. "Empirical Bayes method for Boltzmann machines". Journal of Physics A: Mathematical and Theoretical 53, nr 1 (10.12.2019): 014004. http://dx.doi.org/10.1088/1751-8121/ab57a7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Genovese, Giuseppe, i Daniele Tantari. "Legendre equivalences of spherical Boltzmann machines". Journal of Physics A: Mathematical and Theoretical 53, nr 9 (4.02.2020): 094001. http://dx.doi.org/10.1088/1751-8121/ab6b92.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Melko, Roger G., Giuseppe Carleo, Juan Carrasquilla i J. Ignacio Cirac. "Restricted Boltzmann machines in quantum physics". Nature Physics 15, nr 9 (24.06.2019): 887–92. http://dx.doi.org/10.1038/s41567-019-0545-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Ackley, David H., Geoffrey E. Hinton i Terrence J. Sejnowski. "A Learning Algorithm for Boltzmann Machines*". Cognitive Science 9, nr 1 (styczeń 1985): 147–69. http://dx.doi.org/10.1207/s15516709cog0901_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Apolloni, Bruno, i Diego de Falco. "Learning by Asymmetric Parallel Boltzmann Machines". Neural Computation 3, nr 3 (wrzesień 1991): 402–8. http://dx.doi.org/10.1162/neco.1991.3.3.402.

Pełny tekst źródła
Streszczenie:
We consider the Little, Shaw, Vasudevan model as a parallel asymmetric Boltzmann machine, in the sense that we extend to this model the entropic learning rule first studied by Ackley, Hinton, and Sejnowski in the case of a sequentially activated network with symmetric synaptic matrix. The resulting Hebbian learning rule for the parallel asymmetric model draws the signal for the updating of synaptic weights from time averages of the discrepancy between expected and actual transitions along the past history of the network. As we work without the hypothesis of symmetry of the weights, we can include in our analysis also feedforward networks, for which the entropic learning rule turns out to be complementary to the error backpropagation rule, in that it “rewards the correct behavior” instead of “penalizing the wrong answers.”
Style APA, Harvard, Vancouver, ISO itp.
29

Zhang, Jian, Shifei Ding, Nan Zhang i Weikuan Jia. "Adversarial Training Methods for Boltzmann Machines". IEEE Access 8 (2020): 4594–604. http://dx.doi.org/10.1109/access.2019.2962758.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Fischer, Asja, i Christian Igel. "Training restricted Boltzmann machines: An introduction". Pattern Recognition 47, nr 1 (styczeń 2014): 25–39. http://dx.doi.org/10.1016/j.patcog.2013.05.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Zhang, Nan, Shifei Ding, Jian Zhang i Yu Xue. "An overview on Restricted Boltzmann Machines". Neurocomputing 275 (styczeń 2018): 1186–99. http://dx.doi.org/10.1016/j.neucom.2017.09.065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Schulz, Hannes, Andreas Müller i Sven Behnke. "Exploiting local structure in Boltzmann machines". Neurocomputing 74, nr 9 (kwiecień 2011): 1411–17. http://dx.doi.org/10.1016/j.neucom.2010.12.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kappen, Hilbert J. "Deterministic learning rules for boltzmann machines". Neural Networks 8, nr 4 (styczeń 1995): 537–48. http://dx.doi.org/10.1016/0893-6080(94)00112-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zwietering, Patrick, i Emile Aarts. "Parallel Boltzmann machines: A mathematical model". Journal of Parallel and Distributed Computing 13, nr 1 (wrzesień 1991): 65–75. http://dx.doi.org/10.1016/0743-7315(91)90110-u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Aarts, Emile H. L., i Jan H. M. Korst. "Boltzmann machines for travelling salesman problems". European Journal of Operational Research 39, nr 1 (marzec 1989): 79–95. http://dx.doi.org/10.1016/0377-2217(89)90355-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Upadhya, Vidyadhar, i P. S. Sastry. "An Overview of Restricted Boltzmann Machines". Journal of the Indian Institute of Science 99, nr 2 (18.02.2019): 225–36. http://dx.doi.org/10.1007/s41745-019-0102-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Cheng, Song, Jing Chen i Lei Wang. "Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines". Entropy 20, nr 8 (7.08.2018): 583. http://dx.doi.org/10.3390/e20080583.

Pełny tekst źródła
Streszczenie:
We compare and contrast the statistical physics and quantum physics inspired approaches for unsupervised generative modeling of classical data. The two approaches represent probabilities of observed data using energy-based models and quantum states, respectively. Classical and quantum information patterns of the target datasets therefore provide principled guidelines for structural design and learning in these two approaches. Taking the Restricted Boltzmann Machines (RBM) as an example, we analyze the information theoretical bounds of the two approaches. We also estimate the classical mutual information of the standard MNIST datasets and the quantum Rényi entropy of corresponding Matrix Product States (MPS) representations. Both information measures are much smaller compared to their theoretical upper bound and exhibit similar patterns, which imply a common inductive bias of low information complexity. By comparing the performance of RBM with various architectures on the standard MNIST datasets, we found that the RBM with local sparse connection exhibit high learning efficiency, which supports the application of tensor network states in machine learning problems.
Style APA, Harvard, Vancouver, ISO itp.
38

Teng, Da, Zhang Li, Guanghong Gong i Liang Han. "Boltzmann machines with clusters of stochastic binary units". International Journal of Modeling, Simulation, and Scientific Computing 07, nr 02 (czerwiec 2016): 1650018. http://dx.doi.org/10.1142/s1793962316500185.

Pełny tekst źródła
Streszczenie:
The original restricted Boltzmann machines (RBMs) are extended by replacing the binary visible and hidden variables with clusters of binary units, and a new learning algorithm for training deep Boltzmann machine of this new variant is proposed. The sum of binary units of each cluster is approximated by a Gaussian distribution. Experiments demonstrate that the proposed Boltzmann machines can achieve good performance in the MNIST handwritten digital recognition task.
Style APA, Harvard, Vancouver, ISO itp.
39

Salakhutdinov, Ruslan, i Geoffrey Hinton. "An Efficient Learning Procedure for Deep Boltzmann Machines". Neural Computation 24, nr 8 (sierpień 2012): 1967–2006. http://dx.doi.org/10.1162/neco_a_00311.

Pełny tekst źródła
Streszczenie:
We present a new learning algorithm for Boltzmann machines that contain many layers of hidden variables. Data-dependent statistics are estimated using a variational approximation that tends to focus on a single mode, and data-independent statistics are estimated using persistent Markov chains. The use of two quite different techniques for estimating the two types of statistic that enter into the gradient of the log likelihood makes it practical to learn Boltzmann machines with multiple hidden layers and millions of parameters. The learning can be made more efficient by using a layer-by-layer pretraining phase that initializes the weights sensibly. The pretraining also allows the variational inference to be initialized sensibly with a single bottom-up pass. We present results on the MNIST and NORB data sets showing that deep Boltzmann machines learn very good generative models of handwritten digits and 3D objects. We also show that the features discovered by deep Boltzmann machines are a very effective way to initialize the hidden layers of feedforward neural nets, which are then discriminatively fine-tuned.
Style APA, Harvard, Vancouver, ISO itp.
40

Suykens, Johan A. K. "Deep Restricted Kernel Machines Using Conjugate Feature Duality". Neural Computation 29, nr 8 (sierpień 2017): 2123–63. http://dx.doi.org/10.1162/neco_a_00984.

Pełny tekst źródła
Streszczenie:
The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.
Style APA, Harvard, Vancouver, ISO itp.
41

Kobayashi, Masaki. "Information geometry of hyperbolic-valued Boltzmann machines". Neurocomputing 431 (marzec 2021): 163–68. http://dx.doi.org/10.1016/j.neucom.2020.12.048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

YASUDA, Muneki, i Kazuyuki TANAKA. "Boltzmann Machines with Bounded Continuous Random Variables". Interdisciplinary Information Sciences 13, nr 1 (2007): 25–31. http://dx.doi.org/10.4036/iis.2007.25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Mohan, Ankith, Aiichiro Nakano i Emilio Ferrara. "Graph signal recovery using restricted Boltzmann machines". Expert Systems with Applications 185 (grudzień 2021): 115635. http://dx.doi.org/10.1016/j.eswa.2021.115635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Giuffrida, Mario Valerio, i Sotirios A. Tsaftaris. "Unsupervised Rotation Factorization in Restricted Boltzmann Machines". IEEE Transactions on Image Processing 29 (2020): 2166–75. http://dx.doi.org/10.1109/tip.2019.2946455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Apolloni, Bruno, Egidio Battistini i Diego de Falco. "Higher-order Boltzmann machines and entropy bounds". Journal of Physics A: Mathematical and General 32, nr 30 (20.07.1999): 5529–38. http://dx.doi.org/10.1088/0305-4470/32/30/301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Li, Qing, Yang Chen i Yongjune Kim. "Compression by and for Deep Boltzmann Machines". IEEE Transactions on Communications 68, nr 12 (grudzień 2020): 7498–510. http://dx.doi.org/10.1109/tcomm.2020.3020796.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Bounds, D. G. "A statistical mechanical study of Boltzmann machines". Journal of Physics A: Mathematical and General 20, nr 8 (1.06.1987): 2133–45. http://dx.doi.org/10.1088/0305-4470/20/8/027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Azencott, Robert, Antoine Doutriaux i Laurent Younes. "Synchronous Boltzmann machines and curve identification tasks*". Network: Computation in Neural Systems 4, nr 4 (1.11.1993): 461–80. http://dx.doi.org/10.1088/0954-898x/4/4/004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Azencott, Robert, Antoine Doutriaux i Laurent Younes. "Synchronous Boltzmann machines and curve identification tasks". Network: Computation in Neural Systems 4, nr 4 (styczeń 1993): 461–80. http://dx.doi.org/10.1088/0954-898x_4_4_004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Neal, Radford M. "Asymmetric Parallel Boltzmann Machines are Belief Networks". Neural Computation 4, nr 6 (listopad 1992): 832–34. http://dx.doi.org/10.1162/neco.1992.4.6.832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii