Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Machine learning tools.

Książki na temat „Machine learning tools”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Machine learning tools”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Khosrowpour, Mehdi, i Information Resources Management Association. Machine learning: Concepts, methodologies, tools and applications. Hershey, PA: Information Science Reference, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Learning computer numerical control. Albany, NY: Delmar Publishers, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cost-sensitive machine learning. Boca Raton, FL: CRC Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Eibe, Frank, i Hall Mark A, red. Data mining: Practical machine learning tools and techniques. Wyd. 3. Burlington, MA: Morgan Kaufmann, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Castiello, Maria Elena. Computational and Machine Learning Tools for Archaeological Site Modeling. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88567-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Machine learning: A probabilistic perspective. Cambridge, MA: MIT Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pardalos, Panos M., Stamatina Th Rassia i Arsenios Tsokas, red. Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84459-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Witten, I. H. Data mining: Practical machine learning tools and techniques with Java implementations. San Francisco, Calif: Morgan Kaufmann, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Srinivasa, K. G., G. M. Siddesh i S. R. Manisekhar, red. Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2445-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

National Institute of Standards and Technology (U.S.), red. Manufacturing technology learning modules: Sharing resources for school outreach. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bernhard, Schölkopf, Burges Christopher J. C i Smola Alexander J, red. Advances in kernel methods: Support vector learning. Cambridge, Mass: MIT Press, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Statistical learning and data science. Boca Raton: CRC Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wright, Ivy. Machine Learning: Concepts, Tools and Techniques. States Academic Press, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Irma. Machine Learning: Concepts, Methodologies, Tools and Applications. IGI Global, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

IRMA. Machine Learning: Concepts, Methodologies, Tools and Applications. Information Science Reference, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Choi, Eunsoo, i Minsoo Kang. Machine Learning: Concepts, Tools and Data Visualization. World Scientific Publishing Co Pte Ltd, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

IRMA. Machine Learning: Concepts, Methodologies, Tools and Applications. Information Science Reference, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Choi, Eunsoo, i Minsoo Kang. Machine Learning: Concepts, Tools and Data Visualization. World Scientific Publishing Co Pte Ltd, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Janke, Michael. Learning Computer Numerical Control: Instructor's Guide. Natl Tooling & Machining Assn, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mather, Bob. Machine Learning in Python: Hands on Machine Learning with Python Tools, Concepts and Techniques. Independently Published, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yu, Shipeng, Balaji Krishnapuram i R. Bharat Rao. Cost-Sensitive Machine Learning. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Yu, Shipeng, Balaji Krishnapuram i R. Bharat Rao. Cost-Sensitive Machine Learning. Taylor & Francis Group, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Yu, Shipeng, Balaji Krishnapuram i R. Bharat Rao. Cost-Sensitive Machine Learning. Taylor & Francis Group, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, 2011. http://dx.doi.org/10.1016/c2009-0-19715-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Data mining : practical machine learning tools and techniques. Morgan Kaufmann, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Witten, Ian H., Eibe Frank, Hall Mark A i Christopher Pal. Data Mining: Practical Machine Learning Tools and Techniques. Elsevier Science & Technology Books, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Data Mining: Practical Machine Learning Tools and Techniques. Elsevier Science & Technology Books, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Eddaly, Mansour, Patrick Siarry i Bassem Jarboui. Metaheuristics for Machine Learning: New Advances and Tools. Springer, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Castiello, Maria Elena. Computational and Machine Learning Tools for Archeological Site Modeling. Springer International Publishing AG, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Computational and Machine Learning Tools for Archaeological Site Modeling. Springer International Publishing AG, 2023.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications. Wiley & Sons, Limited, John, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Dulhare, Uma N., Khaleel Ahmad i Khairol Amali Bin Ahmad. Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications. Wiley & Sons, Incorporated, John, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Witten, Ian H., i Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. Elsevier Science & Technology Books, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Dulhare, Uma N., Khaleel Ahmad i Khairol Amali Bin Ahmad. Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications. Wiley & Sons, Incorporated, John, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Farth, Thomas. Machine Learning: Your Ultimate Guide for Concepts, Tools and Techniques. Independently Published, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Dulhare, Uma N., Khaleel Ahmad i Khairol Amali Bin Ahmad. Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications. Wiley & Sons, Limited, John, 2020.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Basuchoudhary, Atin, James T. Bang i Tinni Sen. Machine-learning Techniques in Economics: New Tools for Predicting Economic Growth. Springer, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Etaati, Leila. Machine Learning with Microsoft Technologies: Selecting the Right Architecture and Tools for Your Project. Apress, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, Incorporated, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Modern Advances In Intelligent Systems And Tools. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Nagel, Stefan. Machine Learning in Asset Pricing. Princeton University Press, 2021. http://dx.doi.org/10.23943/princeton/9780691218700.001.0001.

Pełny tekst źródła
Streszczenie:
Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. This book examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, the book discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. The book presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.
Style APA, Harvard, Vancouver, ISO itp.
45

Nagler, Dylan J. SCHUBOT: Machine learning tools for the automated analysis of Schubert's Lieder. 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Shaikh, Tawseef Ayoub, Tabasum Rasool i Saqib Hakak. Machine Learning and Artificial Intelligence in Healthcare Systems: Tools and Techniques. Taylor & Francis Group, 2023.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Shaikh, Tawseef Ayoub, Tabasum Rasool i Saqib Hakak. Machine Learning and Artificial Intelligence in Healthcare Systems: Tools and Techniques. Taylor & Francis Group, 2023.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Shaikh, Tawseef Ayoub, Tabasum Rasool i Saqib Hakak. Machine Learning and Artificial Intelligence in Healthcare Systems: Tools and Techniques. Taylor & Francis Group, 2023.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Witten, Ian H., i Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Elsevier Science & Technology Books, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Fiebrink, Rebecca A., i Baptiste Caramiaux. The Machine Learning Algorithm as Creative Musical Tool. Redaktorzy Roger T. Dean i Alex McLean. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190226992.013.23.

Pełny tekst źródła
Streszczenie:
Machine learning is the capacity of a computational system to learn structure from data in order to make predictions on new data. This chapter draws on music, machine learning, and human-computer interaction to elucidate an understanding of machine learning algorithms as creative tools for music and the sonic arts. It motivates a new understanding of learning algorithms as human-computer interfaces: like other interfaces, learning algorithms can be characterized by the ways their affordances intersect with goals of human users. The chapter also argues that the nature of interaction between users and algorithms impacts the usability and usefulness of those algorithms in profound ways. This human-centred view of machine learning motivates a concluding discussion of what it means to employ machine learning as a creative tool.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii