Artykuły w czasopismach na temat „Machine Learning Informé”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Machine Learning Informé”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shoureshi, R., D. Swedes i R. Evans. "Learning Control for Autonomous Machines". Robotica 9, nr 2 (kwiecień 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Pełny tekst źródłaPateras, Joseph, Pratip Rana i Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning". Applied Sciences 13, nr 12 (7.06.2023): 6892. http://dx.doi.org/10.3390/app13126892.
Pełny tekst źródłaMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng i in. "Soil Science-Informed Machine Learning". Geoderma 452 (grudzień 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Pełny tekst źródłaXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco i Marco Leonetti. "Physics-informed machine learning for microscopy". EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Pełny tekst źródłaZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu i Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils". INFORM International News on Fats, Oils, and Related Materials 31, nr 4 (1.04.2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Pełny tekst źródłaSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly". Annual Review of Vision Science 5, nr 1 (15.09.2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Pełny tekst źródłaArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan i Philip T. Thiem. "Historical maps inform landform cognition in machine learning". Abstracts of the ICA 6 (11.08.2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Pełny tekst źródłaKarimpouli, Sadegh, i Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation". Geoscience Frontiers 11, nr 6 (listopad 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Pełny tekst źródłaZhang, Xi. "Application of Machine Learning in Stock Price Analysis". Highlights in Science, Engineering and Technology 107 (15.08.2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Pełny tekst źródłaLiu, Yang, Ruo Jia, Jieping Ye i Xiaobo Qu. "How machine learning informs ride-hailing services: A survey". Communications in Transportation Research 2 (grudzień 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Pełny tekst źródłaSchwartz, Oscar. "Competing Visions for AI". Digital Culture & Society 4, nr 1 (1.03.2018): 87–106. http://dx.doi.org/10.14361/dcs-2018-0107.
Pełny tekst źródłaWang, Yingxu, Yousheng Tian i Kendal Hu. "Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra". International Journal of Cognitive Informatics and Natural Intelligence 5, nr 3 (lipiec 2011): 1–29. http://dx.doi.org/10.4018/ijcini.2011070101.
Pełny tekst źródłaPandey, Mrs Arjoo. "Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 8 (31.08.2023): 864–69. http://dx.doi.org/10.22214/ijraset.2023.55224.
Pełny tekst źródłaHancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions". Evidence Based Library and Information Practice 19, nr 2 (14.06.2024): 133–35. http://dx.doi.org/10.18438/eblip30521.
Pełny tekst źródłaBerk, Richard, i Jordan Hyatt. "Machine Learning Forecasts of Risk to Inform Sentencing Decisions". Federal Sentencing Reporter 27, nr 4 (1.04.2015): 222–28. http://dx.doi.org/10.1525/fsr.2015.27.4.222.
Pełny tekst źródłaSedej, Owen, Eric Mbonimpa, Trevor Sleight i Jeremy Slagley. "Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review". Journal of Energy and Power Technology 4, nr 3 (18.02.2022): 1. http://dx.doi.org/10.21926/jept.2203027.
Pełny tekst źródłaMasamah, Ulfa, i Dadan Sumardani. "Utilization of The Thrasher and Rice Mill Machines in Composition Function Learning: A Hypothetical Learning Trajectory Design". Hipotenusa : Journal of Mathematical Society 3, nr 2 (28.12.2021): 144–57. http://dx.doi.org/10.18326/hipotenusa.v3i2.5994.
Pełny tekst źródłaPazzani, Michael, Severine Soltani, Robert Kaufman, Samson Qian i Albert Hsiao. "Expert-Informed, User-Centric Explanations for Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 11 (28.06.2022): 12280–86. http://dx.doi.org/10.1609/aaai.v36i11.21491.
Pełny tekst źródłaGao, Kaifu, Dong Chen, Alfred J. Robison i Guo-Wei Wei. "Proteome-Informed Machine Learning Studies of Cocaine Addiction". Journal of Physical Chemistry Letters 12, nr 45 (9.11.2021): 11122–34. http://dx.doi.org/10.1021/acs.jpclett.1c03133.
Pełny tekst źródłaBarmparis, G. D., i G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning". Journal of the Optical Society of America B 38, nr 9 (2.08.2021): C120. http://dx.doi.org/10.1364/josab.430206.
Pełny tekst źródłaPilania, G., K. J. McClellan, C. R. Stanek i B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery". Journal of Chemical Physics 148, nr 24 (28.06.2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Pełny tekst źródłaBai, Tao, i Pejman Tahmasebi. "Accelerating geostatistical modeling using geostatistics-informed machine Learning". Computers & Geosciences 146 (styczeń 2021): 104663. http://dx.doi.org/10.1016/j.cageo.2020.104663.
Pełny tekst źródłaLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazzino, Lorenzo Rosasco i Agnese Seminara. "Physics informed machine learning for wind speed prediction". Energy 268 (kwiecień 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Pełny tekst źródłaTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers i Neil D. Sims. "Resource-efficient machining through physics-informed machine learning". Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Pełny tekst źródłaKapoor, Taniya, Hongrui Wang, Alfredo Núñez i Rolf Dollevoet. "Physics-informed machine learning for moving load problems". Journal of Physics: Conference Series 2647, nr 15 (1.06.2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Pełny tekst źródłaBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya i Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting". ECS Meeting Abstracts MA2024-01, nr 2 (9.08.2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Pełny tekst źródłaCele, Nomfundo, Alain Kibangou i Walter Musakwa. "Machine Learning Analysis of Informal Minibus Taxi Driving". ITM Web of Conferences 69 (2024): 03003. https://doi.org/10.1051/itmconf/20246903003.
Pełny tekst źródłaThete, Prof Sharda, Siddheshwar Midgule, Nikesh Konde i Suraj Kale. "Malware Detection Using Machine Learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, nr 11 (30.11.2022): 1942–45. http://dx.doi.org/10.22214/ijraset.2022.47682.
Pełny tekst źródłaMidgule, Siddheshwar. "Malware Detection Using Machine Learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 4755–58. http://dx.doi.org/10.22214/ijraset.2023.52704.
Pełny tekst źródłaLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee i Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning". Journal of the Acoustical Society of America 152, nr 4 (październik 2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Pełny tekst źródłaChen, James Ming, Mira Zovko, Nika Šimurina i Vatroslav Zovko. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution". International Journal of Environmental Research and Public Health 18, nr 16 (17.08.2021): 8688. http://dx.doi.org/10.3390/ijerph18168688.
Pełny tekst źródłaShah, Chirag Vinalbhai. "Transforming Retail: The Impact of AI and Machine Learning on Big Data Analytics". Global Research and Development Journals 8, nr 8 (1.08.2023): 1–8. http://dx.doi.org/10.70179/grdjev09i100010.
Pełny tekst źródłaRavi, Aravind. "Optimizing Retail Operations: The Role of Machine Learning and Big Data in Data Science". Global Research and Development Journals 9, nr 6 (5.06.2024): 1–10. http://dx.doi.org/10.70179/grdjev09i100015.
Pełny tekst źródłaK., Mrs Tejaswi. "Unmasking DeepFakes Using Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, nr 03 (30.03.2024): 1–5. http://dx.doi.org/10.55041/ijsrem29808.
Pełny tekst źródłaSiontis, Konstantinos C., Xiaoxi Yao, James P. Pirruccello, Anthony A. Philippakis i Peter A. Noseworthy. "How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?" Circulation Research 127, nr 1 (19.06.2020): 155–69. http://dx.doi.org/10.1161/circresaha.120.316401.
Pełny tekst źródłaLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability". AIP Advances 11, nr 2 (1.02.2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Pełny tekst źródłaMondal, B., T. Mukherjee i T. DebRoy. "Crack free metal printing using physics informed machine learning". Acta Materialia 226 (marzec 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Pełny tekst źródłaHowland, Michael F., i John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning". Energies 12, nr 14 (16.07.2019): 2716. http://dx.doi.org/10.3390/en12142716.
Pełny tekst źródłaTartakovsky, A. M., D. A. Barajas-Solano i Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions". Journal of Computational Physics 426 (luty 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Pełny tekst źródłaHsu, Abigail, Baolian Cheng i Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning". Physics of Plasmas 27, nr 1 (styczeń 2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Pełny tekst źródłaKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley i Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae". Astrophysical Journal 940, nr 1 (1.11.2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Pełny tekst źródłaLang, Xiao, Da Wu i Wengang Mao. "Physics-informed machine learning models for ship speed prediction". Expert Systems with Applications 238 (marzec 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Pełny tekst źródłaUganya, G., I. Bremnavas, K. V. Prashanth, M. Rajkumar, R. V. S. Lalitha i Charanjeet Singh. "Empowering autonomous indoor navigation with informed machine learning techniques". Computers and Electrical Engineering 111 (październik 2023): 108918. http://dx.doi.org/10.1016/j.compeleceng.2023.108918.
Pełny tekst źródłaPiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu i Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning". IEEE Transactions on Artificial Intelligence 5, nr 3 (marzec 2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Pełny tekst źródłaKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez i Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 12 (24.03.2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Pełny tekst źródłaMarian, Max, i Stephan Tremmel. "Physics-Informed Machine Learning—An Emerging Trend in Tribology". Lubricants 11, nr 11 (30.10.2023): 463. http://dx.doi.org/10.3390/lubricants11110463.
Pełny tekst źródłaLiu, Hao-Xuan, Hai-Le Yan, Ying Zhao, Nan Jia, Shuai Tang, Daoyong Cong, Bo Yang i in. "Machine learning informed tetragonal ratio c/a of martensite". Computational Materials Science 233 (styczeń 2024): 112735. http://dx.doi.org/10.1016/j.commatsci.2023.112735.
Pełny tekst źródłavon Bloh, Malte, David Lobell i Senthold Asseng. "Knowledge informed hybrid machine learning in agricultural yield prediction". Computers and Electronics in Agriculture 227 (grudzień 2024): 109606. http://dx.doi.org/10.1016/j.compag.2024.109606.
Pełny tekst źródłaCheraghlou, Shayan, Praneeth Sadda, George O. Agogo i Michael Girardi. "A machine‐learning modified CART algorithm informs Merkel cell carcinoma prognosis". Australasian Journal of Dermatology 62, nr 3 (24.05.2021): 323–30. http://dx.doi.org/10.1111/ajd.13624.
Pełny tekst źródłaGao, Junbo. "Applications of machine learning in quantitative trading". Applied and Computational Engineering 82, nr 1 (8.11.2024): 124–29. http://dx.doi.org/10.54254/2755-2721/82/20240984.
Pełny tekst źródła