Gotowa bibliografia na temat „Machine Learning as a Service”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Machine Learning as a Service”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Machine Learning as a Service"
Joseph Poulose, Travis, i S. Ganesh Kumar. "Service identification using k-NN machine learning". International Journal of Engineering & Technology 7, nr 2.4 (10.03.2018): 182. http://dx.doi.org/10.14419/ijet.v7i2.4.13035.
Pełny tekst źródłaWANG, Xinyue, Nobutada FUJII, Toshiya KAIHARA i Daisuke KOKURYO. "SERVICE DESIGN WITH MACHINE LEARNING BASED ON USER ACTION HISTORY". Acta Electrotechnica et Informatica 20, nr 2 (30.06.2020): 11–18. http://dx.doi.org/10.15546/aeei-2020-0008.
Pełny tekst źródłaBhoite, Sayee N., Vaishnavi D. Gadekar, Shashank V. Kapadnis i Priyanka R. Ghuge. "Churn Prediction using Machine Learning Models". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 2233–36. http://dx.doi.org/10.22214/ijraset.2023.52101.
Pełny tekst źródłaTočelovskis, Andrejs, i Artis Teilāns. "MACHINE LEARNING SERVICE FOR STUDENT REGISTRATION". HUMAN. ENVIRONMENT. TECHNOLOGIES. Proceedings of the Students International Scientific and Practical Conference, nr 24 (22.04.2020): 103–9. http://dx.doi.org/10.17770/het2020.24.6759.
Pełny tekst źródłaZuev, Dmitry, Alexey Kalistratov i Andrey Zuev. "Machine Learning in IT Service Management". Procedia Computer Science 145 (2018): 675–79. http://dx.doi.org/10.1016/j.procs.2018.11.063.
Pełny tekst źródłaZimal, Sudarshan, Chirag Shah, Shivam Borhude, Amit Birajdar i Prof Shreedhar Patil. "Customer Churn Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 2 (28.02.2023): 872–83. http://dx.doi.org/10.22214/ijraset.2023.49142.
Pełny tekst źródłaYin, Hexiao. "Role of Artificial Intelligence Machine Learning in Deepening the Internet Plus Social Work Service". Mathematical Problems in Engineering 2021 (6.11.2021): 1–10. http://dx.doi.org/10.1155/2021/6915568.
Pełny tekst źródłaKumaran, N., Purandhar Sri Sai i Lokesh Manikanta. "Web Phishing Detection using Machine Learning". International Journal of Innovative Technology and Exploring Engineering 11, nr 4 (30.03.2022): 56–59. http://dx.doi.org/10.35940/ijitee.c9804.0311422.
Pełny tekst źródłaLiu, Ningbo. "An Empirical Study on Machine Learning for Enterprise Cloud Computing Service Management". Asian Journal of Economics, Business and Accounting 23, nr 9 (28.03.2023): 48–57. http://dx.doi.org/10.9734/ajeba/2023/v23i9963.
Pełny tekst źródłaHan, Bo, i Rongli Zhang. "Virtual Machine Allocation Strategy Based on Statistical Machine Learning". Mathematical Problems in Engineering 2022 (5.07.2022): 1–6. http://dx.doi.org/10.1155/2022/8190296.
Pełny tekst źródłaRozprawy doktorskie na temat "Machine Learning as a Service"
Hesamifard, Ehsan. "Privacy Preserving Machine Learning as a Service". Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703277/.
Pełny tekst źródłaAltalabani, Osama. "An automatic machine-learning framework for testing service-oriented architecure". Thesis, Kingston University, 2014. http://eprints.kingston.ac.uk/32198/.
Pełny tekst źródłaMUSCI, MARIA ANGELA. "Service robotics and machine learning for close-range remote sensing". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2903488.
Pełny tekst źródłaMAZZIA, VITTORIO. "Machine Learning Algorithms and their Embedded Implementation for Service Robotics Applications". Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2968456.
Pełny tekst źródłaAshfaq, Awais. "Predicting clinical outcomes via machine learning on electronic health records". Licentiate thesis, Högskolan i Halmstad, CAISR Centrum för tillämpade intelligenta system (IS-lab), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-39309.
Pełny tekst źródłaDhekne, Rucha P. "Machine Learning Techniques to Provide Quality of Service in Cognitive Radio Technology". University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1258579803.
Pełny tekst źródłaBlank, Clas, i Tomas Hermansson. "A Machine Learning approach to churn prediction in a subscription-based service". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240397.
Pełny tekst źródłaIn today’s world subscription-based online services are becoming increasingly popular. One of the keys to success in a subscription-based business model is to minimize churn, i.e. customer canceling their subscriptions. Due to the digitalization of the world, data is easier to collect than ever before. At the same time machine learning is growing and is made more available. That opens up new possibilities to solve different problems with the use of machine learning. This paper will test and evaluate a machine learning approach to churn prediction, based on the user data from a company with an online subscription service letting the user attend live shows to a fixed price. To perform the tests different machine learning models were used, both individually and combined. The models were Random Forests, Support Vector Machines, Logistic Regression and Neural Networks. In order to train them a data set containing either active or churned users was provided. Eventually the models returned accuracy results ranging from 73.7 % to 76.7 % when classifying churners based on their activity data. Furthermore, the models turned out to have higher scores for precision and recall for classifying the churners than the non-churners. In addition, the features that had the most impact on the model regarding the classification were Tickets Used and Length of Subscription. Moreover, this paper will discuss how churn prediction can be used from a business perspective.
Hill, Jerry L., i Randall P. Mora. "An Autonomous Machine Learning Approach for Global Terrorist Recognition". International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581675.
Pełny tekst źródłaA major intelligence challenge we face in today's national security environment is the threat of terrorist attack against our national assets, especially our citizens. This paper addresses global reconnaissance which incorporates an autonomous Intelligent Agent/Data Fusion solution for recognizing potential risk of terrorist attack through identifying and reporting imminent persona-oriented terrorist threats based on data reduction/compression of a large volume of low latency data possibly from hundreds, or even thousands of data points.
Darborg, Alex. "Real-time face recognition using one-shot learning : A deep learning and machine learning project". Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-40069.
Pełny tekst źródłaTataru, Augustin. "Metrics for Evaluating Machine Learning Cloud Services". Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-37882.
Pełny tekst źródłaKsiążki na temat "Machine Learning as a Service"
Ebers, Martin, i Paloma Krõõt Tupay. Artificial Intelligence and Machine Learning Powered Public Service Delivery in Estonia. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19667-6.
Pełny tekst źródłaKumar, Sumit, Raj Setia i Kuldeep Singh, red. Artificial Intelligence and Machine Learning in Satellite Data Processing and Services. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7698-8.
Pełny tekst źródłaZhou, Zhi-Hua. Machine Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1967-3.
Pełny tekst źródłaJung, Alexander. Machine Learning. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8193-6.
Pełny tekst źródłaMitchell, Tom M., Jaime G. Carbonell i Ryszard S. Michalski. Machine Learning. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2279-5.
Pełny tekst źródłaFernandes de Mello, Rodrigo, i Moacir Antonelli Ponti. Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94989-5.
Pełny tekst źródłaBell, Jason. Machine Learning. Indianapolis, IN, USA: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781119183464.
Pełny tekst źródłaHuang, Kaizhu, Haiqin Yang, Irwin King i Michael Lyu. Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79452-3.
Pełny tekst źródłaJebara, Tony. Machine Learning. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9011-2.
Pełny tekst źródłaElger, Peter Peter, i Eoin Eoin Shanaghy. AI As a Service: Serverless Machine Learning with AWS. Manning Publications Company, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Machine Learning as a Service"
Basler, Daniel. "Machine Learning as a Service". W Neuronale Netze mit C# programmieren, 237–72. München: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.3139/9783446464261.009.
Pełny tekst źródłaObaid, Abdulrahman Mohammed Hussein, Santosh Kumar Pani i Prasant Kumar Pattnaik. "A Critical Analysis of Brokering Services (Scheduling as Service)". W Machine Learning and Information Processing, 425–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1884-3_39.
Pełny tekst źródłaOlivotti, Daniel, Jens Passlick, Alexander Axjonow, Dennis Eilers i Michael H. Breitner. "Combining Machine Learning and Domain Experience: A Hybrid-Learning Monitor Approach for Industrial Machines". W Exploring Service Science, 261–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00713-3_20.
Pełny tekst źródłaLeros, Apostolos P., i Antonios S. Andreatos. "Network Traffic Analytics for Internet Service Providers—Application in Early Prediction of DDoS Attacks". W Machine Learning Paradigms, 233–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94030-4_10.
Pełny tekst źródłaBaresi, Luciano, i Giovanni Quattrocchi. "Training and Serving Machine Learning Models at Scale". W Service-Oriented Computing, 669–83. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20984-0_48.
Pełny tekst źródłaLi, Siqiao, Qingchen Wang i Ger Koole. "Predicting Call Center Performance with Machine Learning". W Advances in Service Science, 193–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04726-9_19.
Pełny tekst źródłaMesser, Uwe, i Stefan Faußer. "Machine Learning Infusion in Service Processes". W Automatisierung und Personalisierung von Dienstleistungen, 343–64. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30168-2_14.
Pełny tekst źródłaIdé, Tsuyoshi. "Formalizing Expert Knowledge Through Machine Learning". W Global Perspectives on Service Science: Japan, 157–75. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3594-9_11.
Pełny tekst źródłaPrice, Ed, Adnan Masood i Gaurav Aroraa. "Azure Machine Learning". W Hands-on Azure Cognitive Services, 321–54. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7249-7_10.
Pełny tekst źródłaDanninger, Maria, Erica Robles, Leila Takayama, QianYing Wang, Tobias Kluge, Rainer Stiefelhagen i Clifford Nass. "The Connector Service-Predicting Availability in Mobile Contexts". W Machine Learning for Multimodal Interaction, 129–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11965152_12.
Pełny tekst źródłaStreszczenia konferencji na temat "Machine Learning as a Service"
Philipp, Robert, Andreas Mladenow, Christine Strauss i Alexander Völz. "Machine Learning as a Service". W iiWAS '20: The 22nd International Conference on Information Integration and Web-based Applications & Services. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3428757.3429152.
Pełny tekst źródłaLi Luo, Hangjiang Liu, Xiaolong Hou i Yingkang Shi. "Machine learning methods for surgery cancellation". W 2016 13th International Conference on Service Systems and Service Management (ICSSSM). IEEE, 2016. http://dx.doi.org/10.1109/icsssm.2016.7538652.
Pełny tekst źródłaWei Shi i Yan-Pingchen. "Web service selection and classification of service requesters". W 2013 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2013. http://dx.doi.org/10.1109/icmlc.2013.6890756.
Pełny tekst źródłaZhu, Chaochao. "How long will the Service Time in a Ride-Hailing Service?" W MLMI '20: 2020 The 3rd International Conference on Machine Learning and Machine Intelligence. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3426826.3426828.
Pełny tekst źródłaRibeiro, Mauro, Katarina Grolinger i Miriam A. M. Capretz. "MLaaS: Machine Learning as a Service". W 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2015. http://dx.doi.org/10.1109/icmla.2015.152.
Pełny tekst źródłaLiu, Wei, Zong-Tian Liu i Wei-Qin Tong. "Agent-Oriented Modeling for Grid Service". W 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370119.
Pełny tekst źródłaYelin Li, Junjie Wu i Hui Bu. "When quantitative trading meets machine learning: A pilot survey". W 2016 13th International Conference on Service Systems and Service Management (ICSSSM). IEEE, 2016. http://dx.doi.org/10.1109/icsssm.2016.7538632.
Pełny tekst źródłaMa, Shang-Pin, Jong-Yih Kuo, Yong-Yi Fanjiang, Chin-Pin Tung i Chun-Ying Huang. "Optimal service selection for composition based on weighted service flow and Genetic Algorithm". W 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580692.
Pełny tekst źródłaDong-Dai Zhou, Zhuo Zhang, Shao-Chun Zhong, Yi Yao i Hong-Mei Zhang. "The study of service oriented architecture of E-learning resources and personalized service model". W 2009 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212810.
Pełny tekst źródłaSpreadsheets, Using, Chi-Yurl Yoon i Shin-Gak Kang. "A study on machine learning web service". W 2017 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2017. http://dx.doi.org/10.1109/ictc.2017.8190774.
Pełny tekst źródłaRaporty organizacyjne na temat "Machine Learning as a Service"
Duarte, Javier, i et al. FPGAs as a Service to Accelerate Machine Learning Inference. Office of Scientific and Technical Information (OSTI), marzec 2019. http://dx.doi.org/10.2172/1570210.
Pełny tekst źródłaDuarte, Javier, i et al. Accelerated Machine Learning as a Service for Particle Physics Computing. Office of Scientific and Technical Information (OSTI), styczeń 2019. http://dx.doi.org/10.2172/1592124.
Pełny tekst źródłaLohn, Andrew. Hacking AI: A Primer for Policymakers on Machine Learning Cybersecurity. Center for Security and Emerging Technology, grudzień 2020. http://dx.doi.org/10.51593/2020ca006.
Pełny tekst źródłaCilliers, Jacobus, Eric Dunford i James Habyarimana. What Do Local Government Education Managers Do to Boost Learning Outcomes? Research on Improving Systems of Education (RISE), marzec 2021. http://dx.doi.org/10.35489/bsg-rise-wp_2021/064.
Pełny tekst źródłaVesselinov, Velimir Valentinov. Machine Learning. Office of Scientific and Technical Information (OSTI), styczeń 2019. http://dx.doi.org/10.2172/1492563.
Pełny tekst źródłaValiant, L. G. Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1993. http://dx.doi.org/10.21236/ada283386.
Pełny tekst źródłaChase, Melissa P. Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1990. http://dx.doi.org/10.21236/ada223732.
Pełny tekst źródłaKagie, Matthew J., i Park Hays. FORTE Machine Learning. Office of Scientific and Technical Information (OSTI), sierpień 2016. http://dx.doi.org/10.2172/1561828.
Pełny tekst źródłaLin, Youzuo, Shihang Feng i Esteban Rougier. Machine Learning Tutorial. Office of Scientific and Technical Information (OSTI), lipiec 2022. http://dx.doi.org/10.2172/1876777.
Pełny tekst źródłaCaplin, Andrew, Daniel Martin i Philip Marx. Modeling Machine Learning. Cambridge, MA: National Bureau of Economic Research, październik 2022. http://dx.doi.org/10.3386/w30600.
Pełny tekst źródła