Gotowa bibliografia na temat „MACHINE ALGORITHMS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „MACHINE ALGORITHMS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "MACHINE ALGORITHMS"
Mishra, Akshansh, i Apoorv Vats. "Supervised Machine Learning Classification Algorithms for Detection of Fracture Location in Dissimilar Friction Stir Welded Joints". Frattura ed Integrità Strutturale 15, nr 58 (25.09.2021): 242–53. http://dx.doi.org/10.3221/igf-esis.58.18.
Pełny tekst źródłaBenbouzid, Bilel. "Unfolding Algorithms". Science & Technology Studies 32, nr 4 (13.12.2019): 119–36. http://dx.doi.org/10.23987/sts.66156.
Pełny tekst źródłaHE, YONG, SHUGUANG HAN i YIWEI JIANG. "ONLINE ALGORITHMS FOR SCHEDULING WITH MACHINE ACTIVATION COST". Asia-Pacific Journal of Operational Research 24, nr 02 (kwiecień 2007): 263–77. http://dx.doi.org/10.1142/s0217595907001231.
Pełny tekst źródłaTURAN, SELIN CEREN, i MEHMET ALI CENGIZ. "ENSEMBLE LEARNING ALGORITHMS". Journal of Science and Arts 22, nr 2 (30.06.2022): 459–70. http://dx.doi.org/10.46939/j.sci.arts-22.2-a18.
Pełny tekst źródłaLing, Qingyang. "Machine learning algorithms review". Applied and Computational Engineering 4, nr 1 (14.06.2023): 91–98. http://dx.doi.org/10.54254/2755-2721/4/20230355.
Pełny tekst źródłaSameer, S. K. L., i P. Sriramya. "Improving the Efficiency by Novel Feature Extraction Technique Using Decision Tree Algorithm Comparing with SVM Classifier Algorithm for Predicting Heart Disease". Alinteri Journal of Agriculture Sciences 36, nr 1 (29.06.2021): 713–20. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21100.
Pełny tekst źródłaMeena, Munesh, i Ruchi Sehrawat. "Breakdown of Machine Learning Algorithms". Recent Trends in Artificial Intelligence & it's Applications 1, nr 3 (16.10.2022): 25–29. http://dx.doi.org/10.46610/rtaia.2022.v01i03.005.
Pełny tekst źródłaMaitre, Julien, Sébastien Gaboury, Bruno Bouchard i Abdenour Bouzouane. "A Black-Box Model for Estimation of the Induction Machine Parameters Based on Stochastic Algorithms". International Journal of Monitoring and Surveillance Technologies Research 3, nr 3 (lipiec 2015): 44–67. http://dx.doi.org/10.4018/ijmstr.2015070103.
Pełny tekst źródłaCastelo, Noah, Maarten W. Bos i Donald Lehmann. "Let the Machine Decide: When Consumers Trust or Distrust Algorithms". NIM Marketing Intelligence Review 11, nr 2 (1.11.2019): 24–29. http://dx.doi.org/10.2478/nimmir-2019-0012.
Pełny tekst źródłaK.M., Umamaheswari. "Road Accident Perusal Using Machine Learning Algorithms". International Journal of Psychosocial Rehabilitation 24, nr 5 (31.03.2020): 1676–82. http://dx.doi.org/10.37200/ijpr/v24i5/pr201839.
Pełny tekst źródłaRozprawy doktorskie na temat "MACHINE ALGORITHMS"
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms". Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Pełny tekst źródłaData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Romano, Donato. "Machine Learning algorithms for predictive diagnostics applied to automatic machines". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22319/.
Pełny tekst źródłaMoon, Gordon Euhyun. "Parallel Algorithms for Machine Learning". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1561980674706558.
Pełny tekst źródłaRoderus, Jens, Simon Larson i Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Pełny tekst źródłaSahoo, Shibashankar. "Soft machine : A pattern language for interacting with machine learning algorithms". Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-182467.
Pełny tekst źródłaDunkelberg, Jr John S. "FEM Mesh Mapping to a SIMD Machine Using Genetic Algorithms". Digital WPI, 2001. https://digitalcommons.wpi.edu/etd-theses/1154.
Pełny tekst źródłaWilliams, Cristyn Barry. "Colour constancy : human mechanisms and machine algorithms". Thesis, City University London, 1995. http://openaccess.city.ac.uk/7731/.
Pełny tekst źródłaMitchell, Brian. "Prepositional phrase attachment using machine learning algorithms". Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412729.
Pełny tekst źródłaPASSOS, BRUNO LEONARDO KMITA DE OLIVEIRA. "SCHEDULING ALGORITHMS APPLICATION FOR MACHINE AVAILABILITY CONSTRAINT". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24311@1.
Pełny tekst źródłaCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Grande parte da literatura de problemas de escalonamento assume que todas as máquinas estão disponíveis durante todo o período de análise o que, na prática, não é verdade, pois algumas das máquinas podem estar indisponíveis para processamento sem aviso prévio devido a problemas ou a políticas de utilização de seus recursos. Nesta tese, exploramos algumas das poucas heurísticas disponíveis na literatura para a minimização do makespan para este tipo de problema NP-difícil e apresentamos uma nova heurística que utiliza estatísticas de disponibilidade das máquinas para gerar um escalonamento. O estudo experimental com dados reais mostrou que a nova heurística apresenta ganhos de makespan em relação aos demais algoritmos clássicos que não utilizam informações de disponibilidade no processo de decisão. A aplicação prática deste problema está relacionada a precificação de ativos de uma carteira teórica de forma a estabelecer o risco de mercado da forma mais rápida possível através da utilização de recursos tecnológicos ociosos.
Most literature in scheduling theory assumes that machines are always available during the scheduling time interval, which in practice is not true due to machine breakdowns or resource usage policies. We study a few available heuristics for the NP-hard problem of minimizing the makespan when breakdowns may happen. We also develop a new scheduling heuristic based on historical machine availability information. Our experimental study, with real data, suggests that this new heuristic is better in terms of makespan than other algorithms that do not take this information into account. We apply the results of our investigation for the asset-pricing problem of a fund portfolio in order to determine a full valuation market risk using idle technological resources of a company.
Wen, Tong 1970. "Support Vector Machine algorithms : analysis and applications". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8404.
Pełny tekst źródłaIncludes bibliographical references (p. 89-97).
Support Vector Machines (SVMs) have attracted recent attention as a learning technique to attack classification problems. The goal of my thesis work is to improve computational algorithms as well as the mathematical understanding of SVMs, so that they can be easily applied to real problems. SVMs solve classification problems by learning from training examples. From the geometry, it is easy to formulate the finding of SVM classifiers as a linearly constrained Quadratic Programming (QP) problem. However, in practice its dual problem is actually computed. An important property of the dual QP problem is that its solution is sparse. The training examples that determine the SVM classifier are known as support vectors (SVs). Motivated by the geometric derivation of the primal QP problem, we investigate how the dual problem is related to the geometry of SVs. This investigation leads to a geometric interpretation of the scaling property of SVMs and an algorithm to further compress the SVs. A random model for the training examples connects the Hessian matrix of the dual QP problem to Wishart matrices. After deriving the distributions of the elements of the inverse Wishart matrix Wn-1(n, nI), we give a conjecture about the summation of the elements of Wn-1(n, nI). It becomes challenging to solve the dual QP problem when the training set is large. We develop a fast algorithm for solving this problem. Numerical experiments show that the MATLAB implementation of this projected Conjugate Gradient algorithm is competitive with benchmark C/C++ codes such as SVMlight and SvmFu. Furthermore, we apply SVMs to time series data.
(cont.) In this application, SVMs are used to predict the movement of the stock market. Our results show that using SVMs has the potential to outperform the solution based on the most widely used geometric Brownian motion model of stock prices.
by Tong Wen.
Ph.D.
Książki na temat "MACHINE ALGORITHMS"
Li, Fuwei, Lifeng Lai i Shuguang Cui. Machine Learning Algorithms. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16375-3.
Pełny tekst źródłaAyyadevara, V. Kishore. Pro Machine Learning Algorithms. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3564-5.
Pełny tekst źródłaArnold, Schönhage. Fast algorithms: A multitape Turing machine implementation. Mannheim: B.I. Wissenschaftsverlag, 1994.
Znajdź pełny tekst źródłaWhelan, Paul F., i Derek Molloy. Machine Vision Algorithms in Java. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0251-9.
Pełny tekst źródłaGrefenstette, John J., red. Genetic Algorithms for Machine Learning. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2740-4.
Pełny tekst źródłaMandal, Jyotsna Kumar, Somnath Mukhopadhyay, Paramartha Dutta i Kousik Dasgupta, red. Algorithms in Machine Learning Paradigms. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1041-0.
Pełny tekst źródłaMachine vision: theory, algorithms, practicalities. London: Academic, 1990.
Znajdź pełny tekst źródłaDavies, E. R. Machine vision: Theory, algorithms, practicalities. Wyd. 3. Amsterdam: Elsevier, 2005.
Znajdź pełny tekst źródłaJ, Grefenstette John, red. Genetic algorithms for machine learning. Boston: Kluwer Academic Publishers, 1994.
Znajdź pełny tekst źródłaPaliouras, Georgios. Scalability of machine learning algorithms. Manchester: University of Manchester, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "MACHINE ALGORITHMS"
Geetha, T. V., i S. Sendhilkumar. "Classification Algorithms". W Machine Learning, 127–51. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003290100-6.
Pełny tekst źródłaBrucker, Peter. "Single Machine Scheduling Problems". W Scheduling Algorithms, 61–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24804-0_4.
Pełny tekst źródłaBrucker, Peter. "Single Machine Scheduling Problems". W Scheduling Algorithms, 61–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04550-3_4.
Pełny tekst źródłaBrucker, Peter. "Single Machine Scheduling Problems". W Scheduling Algorithms, 61–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03612-9_4.
Pełny tekst źródłaBrucker, Peter. "Single Machine Scheduling Problems". W Scheduling Algorithms, 60–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03088-2_4.
Pełny tekst źródłaPendyala, Vishnu. "Machine Learning Algorithms". W Veracity of Big Data, 87–118. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3633-8_5.
Pełny tekst źródłaPanesar, Arjun. "Machine Learning Algorithms". W Machine Learning and AI for Healthcare, 119–88. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-3799-1_4.
Pełny tekst źródłaSteger, Carsten. "Machine Vision Algorithms". W Handbook of Machine and Computer Vision, 505–698. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527413409.ch9.
Pełny tekst źródłaPanesar, Arjun. "Machine Learning Algorithms". W Machine Learning and AI for Healthcare, 85–144. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6537-6_4.
Pełny tekst źródłaZhou, Ding-Xuan. "Machine Learning Algorithms". W Encyclopedia of Applied and Computational Mathematics, 839–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_301.
Pełny tekst źródłaStreszczenia konferencji na temat "MACHINE ALGORITHMS"
Wang, Yingfeng, Zhijing Liu i Wei Yan. "Algorithms for Random Adjacency Matrixes Generation Used for Scheduling Algorithms Test". W 2010 International Conference on Machine Vision and Human-machine Interface. IEEE, 2010. http://dx.doi.org/10.1109/mvhi.2010.190.
Pełny tekst źródłaArden, Farel, i Cutifa Safitri. "Hyperparameter Tuning Algorithm Comparison with Machine Learning Algorithms". W 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2022. http://dx.doi.org/10.1109/icitisee57756.2022.10057630.
Pełny tekst źródłaTeixeira, L. P., W. Celes i M. Gattass. "Accelerated Corner-Detector Algorithms". W British Machine Vision Conference 2008. British Machine Vision Association, 2008. http://dx.doi.org/10.5244/c.22.62.
Pełny tekst źródłaNarendra, Pat. "VLSI Architectures for Real-Time Image Processing". W Machine Vision. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/mv.1985.fd4.
Pełny tekst źródłaShabdirova, Ainash, Ashirgul Kozhagulova, Minh Nguyen i Yong Zhao. "A Novel Approach to Sand Volume Prediction Using Machine Learning Algorithms". W International Petroleum Technology Conference. IPTC, 2023. http://dx.doi.org/10.2523/iptc-22770-ea.
Pełny tekst źródłaHalyo, Nesim, i Richard W. Samms. "Combined Optimization of Image Gathering Optics and Image Processing Algorithm for Edge Detection". W Machine Vision. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/mv.1985.thd1.
Pełny tekst źródłaAbdullahi, M. I., G. I. O. Aimufua i U. A. Muhammad. "Application of Sales Forecasting Model Based on Machine Learning Algorithms." W 28th iSTEAMS Multidisciplinary Research Conference AIUWA The Gambia. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v28p17.
Pełny tekst źródłaCourtney, P., R. B. Yates i P. A. Ivey. "Mapping Algorithms on to Platforms: An Approach to Algorithm and Hardware Co-Design". W British Machine Vision Conference 1994. British Machine Vision Association, 1994. http://dx.doi.org/10.5244/c.8.79.
Pełny tekst źródłaGarnica, O. "Finite state machine optimization using genetic algorithms". W Second International Conference on Genetic Algorithms in Engineering Systems. IEE, 1997. http://dx.doi.org/10.1049/cp:19971194.
Pełny tekst źródłaKhan, Rehan Ullah, i Saleh Albahli. "Machine Learning Augmentation". W ACAI 2019: 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3377713.3377726.
Pełny tekst źródłaRaporty organizacyjne na temat "MACHINE ALGORITHMS"
Stepp, Robert E., Bradley L. Whitehall i Lawrence B. Holder. Toward Intelligent Machine Learning Algorithms. Fort Belvoir, VA: Defense Technical Information Center, maj 1988. http://dx.doi.org/10.21236/ada197049.
Pełny tekst źródłaCaravelli, Francesco. Towards memristor supremacy with novel machine learning algorithms. Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1822713.
Pełny tekst źródłaDim, Odera, Carlos Soto, Yonggang Cui, Lap-Yan Cheng, Maia Gemmill, Thomas Grice, Joseph Rivers, Warren Stern i Michael Todosow. VERIFICATION OF TRISO FUEL BURNUP USING MACHINE LEARNING ALGORITHMS. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1813329.
Pełny tekst źródłaWaldrop, Lauren, Carl Hart, Nancy Parker, Chris Pettit i Scotland McIntosh. Utility of machine learning algorithms for natural background photo classification. Cold Regions Research and Engineering Laboratory (U.S.), czerwiec 2018. http://dx.doi.org/10.21079/11681/27344.
Pełny tekst źródłaGrechanuk, Pavel, Michael Rising i Todd Palmer. Application of Machine Learning Algorithms to Identify Problematic Nuclear Data. Office of Scientific and Technical Information (OSTI), styczeń 2021. http://dx.doi.org/10.2172/1906466.
Pełny tekst źródłaBissett, W. P. Optimizing Machine Learning Algorithms For Hyperspectral Very Shallow Water (VSW) Products. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2009. http://dx.doi.org/10.21236/ada531071.
Pełny tekst źródłaBissett, W. P. Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada504929.
Pełny tekst źródłaBissett, W. P. Optimizing Machine Learning Algorithms for Hyperspectral Very Shallow Water (VSW) Products. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2008. http://dx.doi.org/10.21236/ada516714.
Pełny tekst źródłaPoczos, Barnabas. Machine Learning Algorithms for Matching Theories, Simulations, and Observations in Cosmology. Office of Scientific and Technical Information (OSTI), grudzień 2018. http://dx.doi.org/10.2172/1572709.
Pełny tekst źródłaHerrera, Allen, Eugene Moore i Alexander Heifetz. Development of Gamma Background Radiation Digital Twin with Machine Learning Algorithms. Office of Scientific and Technical Information (OSTI), listopad 2020. http://dx.doi.org/10.2172/1735365.
Pełny tekst źródła