Artykuły w czasopismach na temat „M. tuberculosis argininosuccinate lyase”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 22 najlepszych artykułów w czasopismach naukowych na temat „M. tuberculosis argininosuccinate lyase”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Paul, Anju, Archita Mishra, Avadhesha Surolia i Mamannamana Vijayan. "Structural studies on M. tuberculosis argininosuccinate lyase and its liganded complex: Insights into catalytic mechanism". IUBMB Life 71, nr 5 (7.01.2019): 643–52. http://dx.doi.org/10.1002/iub.2000.
Pełny tekst źródłaChen, Xiaobo, Jiayue Chen, Wei Zhang, Huiying Wang, Xiang Liu, Weihong Zhou, Haitao Yang i Zihe Rao. "Crystal structure and biochemical study on argininosuccinate lyase from Mycobacterium tuberculosis". Biochemical and Biophysical Research Communications 510, nr 1 (luty 2019): 116–21. http://dx.doi.org/10.1016/j.bbrc.2019.01.061.
Pełny tekst źródłaSalapatek, Anne Marie F., Yu-Fang Wang, Yu-Kang Mao, Masataka Mori i Edwin E. Daniel. "Myogenic NOS in canine lower esophageal sphincter: enzyme activation, substrate recycling, and product actions". American Journal of Physiology-Cell Physiology 274, nr 4 (1.04.1998): C1145—C1157. http://dx.doi.org/10.1152/ajpcell.1998.274.4.c1145.
Pełny tekst źródłaChung, Sai-Fung, Chi-Fai Kim, Ho-Yin Chow, Hiu-Chi Chong, Suet-Ying Tam, Yun-Chung Leung i Wai-Hung Lo. "Recombinant Bacillus caldovelox Arginase Mutant (BCA-M) Induces Apoptosis, Autophagy, Cell Cycle Arrest and Growth Inhibition in Human Cervical Cancer Cells". International Journal of Molecular Sciences 21, nr 20 (9.10.2020): 7445. http://dx.doi.org/10.3390/ijms21207445.
Pełny tekst źródłaPaul, A., A. Mishra, A. Surolia i M. Vijayan. "Cloning, expression, purification, crystallization and preliminary X-ray studies of argininosuccinate lyase (Rv1659) fromMycobacterium tuberculosis". Acta Crystallographica Section F Structural Biology and Crystallization Communications 69, nr 12 (29.11.2013): 1422–24. http://dx.doi.org/10.1107/s1744309113031138.
Pełny tekst źródłaLee, H. J., S. H. Chiou i G. G. Chang. "Inactivation of the endogenous argininosuccinate lyase activity of duck δ-crystallin by modification of an essential histidine residue with diethyl pyrocarbonate". Biochemical Journal 293, nr 2 (15.07.1993): 537–44. http://dx.doi.org/10.1042/bj2930537.
Pełny tekst źródłaHöner Zu Bentrup, Kerstin, Andras Miczak, Dana L. Swenson i David G. Russell. "Characterization of Activity and Expression of Isocitrate Lyase in Mycobacterium avium andMycobacterium tuberculosis". Journal of Bacteriology 181, nr 23 (1.12.1999): 7161–67. http://dx.doi.org/10.1128/jb.181.23.7161-7167.1999.
Pełny tekst źródłaMishra, Archita, i Avadhesha Surolia. "Biochemical characterization of argininosuccinate lyase fromM. tuberculosis: significance of a c-terminal cysteine in catalysis and thermal stability". IUBMB Life 69, nr 11 (16.10.2017): 896–907. http://dx.doi.org/10.1002/iub.1683.
Pełny tekst źródłaDuan, Changyuan, Qihua Jiang, Xue Jiang, Hongwei Zeng, Qiaomin Wu, Yang Yu i Xiaolan Yang. "Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase". Molecules 27, nr 8 (11.04.2022): 2447. http://dx.doi.org/10.3390/molecules27082447.
Pełny tekst źródłaLee, Yie-Vern, Habibah A. Wahab i Yee Siew Choong. "Potential Inhibitors for Isocitrate Lyase ofMycobacterium tuberculosisand Non-M. tuberculosis: A Summary". BioMed Research International 2015 (2015): 1–20. http://dx.doi.org/10.1155/2015/895453.
Pełny tekst źródłaGouzy, Alexandre, Claire Healy, Katherine A. Black, Kyu Y. Rhee i Sabine Ehrt. "Growth of Mycobacterium tuberculosis at acidic pH depends on lipid assimilation and is accompanied by reduced GAPDH activity". Proceedings of the National Academy of Sciences 118, nr 32 (2.08.2021): e2024571118. http://dx.doi.org/10.1073/pnas.2024571118.
Pełny tekst źródłaMicklinghoff, Julia C., Katrin J. Breitinger, Mascha Schmidt, Robert Geffers, Bernhard J. Eikmanns i Franz-Christoph Bange. "Role of the Transcriptional Regulator RamB (Rv0465c) in the Control of the Glyoxylate Cycle in Mycobacterium tuberculosis". Journal of Bacteriology 191, nr 23 (18.09.2009): 7260–69. http://dx.doi.org/10.1128/jb.01009-09.
Pełny tekst źródłaChanda, Anesha, Sanjib Kalita, Awdhesh Kumar Mishra, Liza Changkakoti, Janayita Biswa Sarma, Kunal Biswas, Debashree Kakati i in. "Identification of Concomitant Inhibitors against Glutamine Synthetase and Isocitrate Lyase in Mycobacterium tuberculosis from Natural Sources". BioMed Research International 2022 (3.10.2022): 1–14. http://dx.doi.org/10.1155/2022/4661491.
Pełny tekst źródłaSavvi, Suzana, Digby F. Warner, Bavesh D. Kana, John D. McKinney, Valerie Mizrahi i Stephanie S. Dawes. "Functional Characterization of a Vitamin B12-Dependent Methylmalonyl Pathway in Mycobacterium tuberculosis: Implications for Propionate Metabolism during Growth on Fatty Acids". Journal of Bacteriology 190, nr 11 (28.03.2008): 3886–95. http://dx.doi.org/10.1128/jb.01767-07.
Pełny tekst źródłaHarrison, Anthony J., Minmin Yu, Therés Gårdenborg, Martin Middleditch, Rochelle J. Ramsay, Edward N. Baker i J. Shaun Lott. "The Structure of MbtI from Mycobacterium tuberculosis, the First Enzyme in the Biosynthesis of the Siderophore Mycobactin, Reveals It To Be a Salicylate Synthase". Journal of Bacteriology 188, nr 17 (1.09.2006): 6081–91. http://dx.doi.org/10.1128/jb.00338-06.
Pełny tekst źródłaWalsh, P. "Subcellular localization and biochemical properties of the enzymes of carbamoyl phosphate and urea synthesis in the batrachoidid fishes Opsanus beta, Opsanus tau and Porichthys notatus". Journal of Experimental Biology 198, nr 3 (1.03.1995): 755–66. http://dx.doi.org/10.1242/jeb.198.3.755.
Pełny tekst źródłaWang, Xiao-Ming, Changlong Lu, Karine Soetaert, Catherine S'Heeren, Priska Peirs, Marie-Antoinette Lanéelle, Philippe Lefèvre i in. "Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG". Microbiology 157, nr 4 (1.04.2011): 1205–19. http://dx.doi.org/10.1099/mic.0.045120-0.
Pełny tekst źródłaIbeji, Collins U., Nor Amirah Mohd Salleh, Jia Siang Sum, Angela Chiew Wen Ch’ng, Theam Soon Lim i Yee Siew Choong. "Demystifying the catalytic pathway of Mycobacterium tuberculosis isocitrate lyase". Scientific Reports 10, nr 1 (3.11.2020). http://dx.doi.org/10.1038/s41598-020-75799-8.
Pełny tekst źródłaKo, Eon-Min, Ju-Yeon Kim, Sujin Lee, Suhkmann Kim, Jihwan Hwang i Jeong-Il Oh. "Regulation of the icl1 gene encoding the major isocitrate lyase in Mycobacterium smegmatis". Journal of Bacteriology, 13.09.2021. http://dx.doi.org/10.1128/jb.00402-21.
Pełny tekst źródłaHavis, Spencer, Abiodun Bodunrin, Jonathan Rangel, Rene Zimmerer, Jesse Murphy, Jacob D. Storey, Thinh D. Duong i in. "A Universal Stress Protein That Controls Bacterial Stress Survival in Micrococcus luteus". Journal of Bacteriology 201, nr 24 (23.09.2019). http://dx.doi.org/10.1128/jb.00497-19.
Pełny tekst źródłaPuniya, Bhanwar Lal, Deepika Kulshreshtha, Inna Mittal, Ahmed Mobeen i Srinivasan Ramachandran. "Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis". Scientific Reports 6, nr 1 (22.03.2016). http://dx.doi.org/10.1038/srep23440.
Pełny tekst źródłaSharma, Shweta, Rupesh Chikhale, Nivedita Shinde, A. M. Khan i Vivek Kumar Gupta. "Targeting dormant phenotype acquired mycobacteria using natural products by exploring its important targets: In vitro and in silico studies". Frontiers in Cellular and Infection Microbiology 13 (24.03.2023). http://dx.doi.org/10.3389/fcimb.2023.1111997.
Pełny tekst źródła