Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Lunar wake.

Artykuły w czasopismach na temat „Lunar wake”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lunar wake”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Fatemi, S., M. Holmström, Y. Futaana, S. Barabash i C. Lue. "The lunar wake current systems". Geophysical Research Letters 40, nr 1 (16.01.2013): 17–21. http://dx.doi.org/10.1029/2012gl054635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yan, Bo, Punam K. Prasad, Sayan Mukherjee, Asit Saha i Santo Banerjee. "Dynamical Complexity and Multistability in a Novel Lunar Wake Plasma System". Complexity 2020 (16.03.2020): 1–11. http://dx.doi.org/10.1155/2020/5428548.

Pełny tekst źródła
Streszczenie:
Dynamical complexity and multistability of electrostatic waves are investigated in a four-component homogeneous and magnetized lunar wake plasma constituting of beam electrons, heavier ions (alpha particles, He++), protons, and suprathermal electrons. The unperturbed dynamical system of the considered lunar wake plasma supports nonlinear and supernonlinear trajectories which correspond to nonlinear and supernonlinear electrostatic waves. On the contrary, the perturbed dynamical system of lunar wake plasma shows different types of coexisting attractors including periodic, quasiperiodic, and chaotic, investigated by phase plots and Lyapunov exponents. To confirm chaotic and nonchaotic dynamics in the perturbed lunar wake plasma, 0−1 chaos test is performed. Furthermore, a weighted recurrence-based entropy is implemented to investigate the dynamical complexity of the system. Numerical results show existence of chaos with variation of complexity in the perturbed dynamics.
Style APA, Harvard, Vancouver, ISO itp.
3

CUI, Wei, i Lei LI. "2D MHD Simulation of the Lunar Wake". Chinese Journal of Space Science 28, nr 3 (2008): 189. http://dx.doi.org/10.11728/cjss2008.03.189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tao, J. B., R. E. Ergun, D. L. Newman, J. S. Halekas, L. Andersson, V. Angelopoulos, J. W. Bonnell i in. "Kinetic instabilities in the lunar wake: ARTEMIS observations". Journal of Geophysical Research: Space Physics 117, A3 (marzec 2012): n/a. http://dx.doi.org/10.1029/2011ja017364.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Xie, LiangHai, Lei Li, YiTeng Zhang i Darren Lee De Zeeuw. "Three-dimensional MHD simulation of the lunar wake". Science China Earth Sciences 56, nr 2 (11.04.2012): 330–38. http://dx.doi.org/10.1007/s11430-012-4383-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Zhang, H., K. K. Khurana, M. G. Kivelson, V. Angelopoulos, W. X. Wan, L. B. Liu, Q. G. Zong, Z. Y. Pu, Q. Q. Shi i W. L. Liu. "Three-dimensional lunar wake reconstructed from ARTEMIS data". Journal of Geophysical Research: Space Physics 119, nr 7 (lipiec 2014): 5220–43. http://dx.doi.org/10.1002/2014ja020111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rasca, Anthony P., Shahab Fatemi i William M. Farrell. "Modeling the Lunar Wake Response to a CME Using a Hybrid PIC Model". Planetary Science Journal 3, nr 1 (1.01.2022): 4. http://dx.doi.org/10.3847/psj/ac3fba.

Pełny tekst źródła
Streszczenie:
Abstract In the solar wind, a low-density wake region forms downstream of the nightside lunar surface. In this study, we use a series of 3D hybrid particle-in-cell simulations to model the response of the lunar wake to a passing coronal mass ejection (CME). Average plasma parameters are derived from the Wind spacecraft located at 1 au during three distinct phases of a passing halo (Earth-directed) CME on 2015 June 22. Each set of plasma parameters, representing the shock/plasma sheath, a magnetic cloud, and plasma conditions we call the mid-CME phase, are used as the time-static upstream boundary conditions for three separate simulations. These simulation results are then compared with results that use nominal solar wind conditions. Results show a shortened plasma void compared to nominal conditions and a distinctive rarefaction cone originating from the terminator during the CME’s plasma sheath phase, while a highly elongated plasma void reforms during the magnetic cloud and mid-CME phases. Developments of electric and magnetic field intensification are also observed during the plasma sheath phase along the central wake, while electrostatic turbulence dominates along the plasma void boundaries and 2–3 lunar radii R M downstream in the central wake during the magnetic cloud and mid-CME phases. The simulations demonstrate that the lunar wake responds in a dynamic way with the changes in the upstream solar wind during a CME.
Style APA, Harvard, Vancouver, ISO itp.
8

Xu, Shaosui, Andrew R. Poppe, Jasper S. Halekas, David L. Mitchell, James P. McFadden i Yuki Harada. "Mapping the Lunar Wake Potential Structure With ARTEMIS Data". Journal of Geophysical Research: Space Physics 124, nr 5 (maj 2019): 3360–77. http://dx.doi.org/10.1029/2019ja026536.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rubia, R., S. V. Singh i G. S. Lakhina. "Occurrence of electrostatic solitary waves in the lunar wake". Journal of Geophysical Research: Space Physics 122, nr 9 (wrzesień 2017): 9134–47. http://dx.doi.org/10.1002/2017ja023972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sreeraj, T., S. V. Singh i G. S. Lakhina. "Electrostatic waves driven by electron beam in lunar wake plasma". Physics of Plasmas 25, nr 5 (maj 2018): 052902. http://dx.doi.org/10.1063/1.5032141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sreeraj, T., S. V. Singh i G. S. Lakhina. "Linear analysis of electrostatic waves in the lunar wake plasma". Physica Scripta 95, nr 4 (19.02.2020): 045610. http://dx.doi.org/10.1088/1402-4896/ab7142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Nakagawa, Tomoko, Yoshinori Takahashi i Masahide Iizima. "GEOTAIL observation of upstream ULF waves associated with lunar wake". Earth, Planets and Space 55, nr 9 (wrzesień 2003): 569–80. http://dx.doi.org/10.1186/bf03351789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Birch, Paul C., i Sandra C. Chapman. "Two dimensional particle-in-cell simulations of the lunar wake". Physics of Plasmas 9, nr 5 (maj 2002): 1785–89. http://dx.doi.org/10.1063/1.1467655.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Rubia, R., S. V. Singh i G. S. Lakhina. "Existence domain of electrostatic solitary waves in the lunar wake". Physics of Plasmas 25, nr 3 (marzec 2018): 032302. http://dx.doi.org/10.1063/1.5017638.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Owen, C. J., R. P. Lepping, K. W. Ogilvie, J. A. Slavin, W. M. Farrell i J. B. Byrnes. "The lunar wake at 6.8 RL: WIND magnetic field observations". Geophysical Research Letters 23, nr 10 (15.05.1996): 1263–66. http://dx.doi.org/10.1029/96gl01354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Poppe, A. R., S. Fatemi, J. S. Halekas, M. Holmström i G. T. Delory. "ARTEMIS observations of extreme diamagnetic fields in the lunar wake". Geophysical Research Letters 41, nr 11 (13.06.2014): 3766–73. http://dx.doi.org/10.1002/2014gl060280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Farrell, W. M., P. E. Clark, M. R. Collier, B. Malphrus, D. C. Folta, M. Keidar, D. C. Bradley, R. J. MacDowall i J. W. Keller. "Terminator Double Layer Explorer (TerDLE): Examining the Near-Moon Lunar Wake". Planetary Science Journal 2, nr 2 (18.03.2021): 61. http://dx.doi.org/10.3847/psj/abe0ca.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Xu, Xiaojun, Qi Xu, Qing Chang, Jiaying Xu, Jing Wang, Yi Wang, Pingbing Zuo i Vassilis Angelopoulos. "ARTEMIS Observations of Well-structured Lunar Wake in Subsonic Plasma Flow". Astrophysical Journal 881, nr 1 (14.08.2019): 76. http://dx.doi.org/10.3847/1538-4357/ab2e0a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Guo, Dawei, Xiaoping Zhang, Lianghai Xie, Xiaojun Xu, Aoao Xu, Qi Yan, Yi Xu i Fan Yang. "Diamagnetic Plasma Clouds in the Near Lunar Wake Observed by ARTEMIS". Astrophysical Journal 883, nr 1 (17.09.2019): 12. http://dx.doi.org/10.3847/1538-4357/ab3652.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Halekas, J. S., S. D. Bale, D. L. Mitchell i R. P. Lin. "Correction to “Electrons and magnetic fields in the lunar plasma wake”". Journal of Geophysical Research: Space Physics 116, A7 (lipiec 2011): n/a. http://dx.doi.org/10.1029/2011ja016929.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Clack, D., J. C. Kasper, A. J. Lazarus, J. T. Steinberg i W. M. Farrell. "Wind observations of extreme ion temperature anisotropies in the lunar wake". Geophysical Research Letters 31, nr 6 (marzec 2004): n/a. http://dx.doi.org/10.1029/2003gl018298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Chandran, S. B. Rakesh, S. R. Rajesh, A. Abraham, G. Renuka i Chandu Venugopal. "SEP events and wake region lunar dust charging with grain radii". Advances in Space Research 59, nr 1 (styczeń 2017): 483–89. http://dx.doi.org/10.1016/j.asr.2016.09.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zhang, H., K. K. Khurana, M. G. Kivelson, S. Fatemi, M. Holmström, V. Angelopoulos, Y. D. Jia i in. "Alfvén wings in the lunar wake: The role of pressure gradients". Journal of Geophysical Research: Space Physics 121, nr 11 (listopad 2016): 10,698–10,711. http://dx.doi.org/10.1002/2016ja022360.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Halekas, J. S., V. Angelopoulos, D. G. Sibeck, K. K. Khurana, C. T. Russell, G. T. Delory, W. M. Farrell i in. "First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake". Space Science Reviews 165, nr 1-4 (20.01.2011): 93–107. http://dx.doi.org/10.1007/s11214-010-9738-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wiehle, S., F. Plaschke, U. Motschmann, K. H. Glassmeier, H. U. Auster, V. Angelopoulos, J. Mueller i in. "First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations". Planetary and Space Science 59, nr 8 (czerwiec 2011): 661–71. http://dx.doi.org/10.1016/j.pss.2011.01.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Xu, Xiaojun, Jiaying Xu, Qi Xu, Qing Chang i Jing Wang. "Rapid Refilling of the Lunar Wake under Transonic Plasma Flow: ARTEMIS Observations". Astrophysical Journal 908, nr 2 (1.02.2021): 227. http://dx.doi.org/10.3847/1538-4357/abd6f1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Nakagawa, Tomoko, i Masahide Iizima. "Pitch angle diffusion of electrons at the boundary of the lunar wake". Earth, Planets and Space 57, nr 9 (wrzesień 2005): 885–94. http://dx.doi.org/10.1186/bf03351866.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Nishino, M. N., M. Fujimoto, Y. Saito, S. Yokota, Y. Kasahara, Y. Omura, Y. Goto i in. "Effect of the solar wind proton entry into the deepest lunar wake". Geophysical Research Letters 37, nr 12 (czerwiec 2010): n/a. http://dx.doi.org/10.1029/2010gl043948.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Birch, Paul C., i Sandra C. Chapman. "Detailed structure and dynamics in particle-in-cell simulations of the lunar wake". Physics of Plasmas 8, nr 10 (październik 2001): 4551–59. http://dx.doi.org/10.1063/1.1398570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Birch, Paul C., i Sandra C. Chapman. "Particle-in-cell simulations of the lunar wake with high phase space resolution". Geophysical Research Letters 28, nr 2 (15.01.2001): 219–22. http://dx.doi.org/10.1029/2000gl011958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Yu, William, Joseph Wang i Kevin Chou. "Laboratory Measurement of Lunar Regolith Simulant Surface Charging in a Localized Plasma Wake". IEEE Transactions on Plasma Science 43, nr 12 (grudzień 2015): 4175–81. http://dx.doi.org/10.1109/tps.2015.2492551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Gharaee, Hossna, Robert Rankin, Richard Marchand i Jan Paral. "Properties of the lunar wake predicted by analytic models and hybrid-kinetic simulations". Journal of Geophysical Research: Space Physics 120, nr 5 (maj 2015): 3795–803. http://dx.doi.org/10.1002/2014ja020907.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Dhanya, M. B., A. Bhardwaj, Y. Futaana, S. Fatemi, M. Holmström, S. Barabash, M. Wieser, P. Wurz, A. Alok i R. S. Thampi. "Proton entry into the near-lunar plasma wake for magnetic field aligned flow". Geophysical Research Letters 40, nr 12 (18.06.2013): 2913–17. http://dx.doi.org/10.1002/grl.50617.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Yen, Gili, Cheng F. Lee, Cheng-Lung Chen i Wei-Chi Lin. "On the Chinese Lunar New Year Effect in Six Asian Stock Markets: An Empirical Analysis (1991–2000)". Review of Pacific Basin Financial Markets and Policies 04, nr 04 (grudzień 2001): 463–78. http://dx.doi.org/10.1142/s0219091501000619.

Pełny tekst źródła
Streszczenie:
This paper examines the existence/nonexistence of the Chinese Lunar New Year effect in Hong Kong, Japan, South Korea, Malaysia, Singapore, and Taiwan in recent years. Using longitudinal stock price index data from 1991 to 2000, the authors find that cumulative returns based on stock indices in the above mentioned Asian markets exhibit a consistently up-moving trend before or after the Chinese Lunar New Year, providing evidence for continued existence of the Chinese Lunar New Year effect in these six Asian stock markets in recent years. However, when the sample period is divided into before- vs. after-Asian financial crisis period, different patterns emerge. In the wake of the Asian financial crisis, the crisis effect has some role to play, especially, for Malaysia and Singapore. In viewing the timing and patterns of the Chinese Lunar New Year effect in these six Asian markets differ from each other, the authors also recommend to investors the best investment strategy to capture the largest returns.
Style APA, Harvard, Vancouver, ISO itp.
35

Haakonsen, Christian Bernt, Ian H. Hutchinson i Chuteng Zhou. "Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio". Physics of Plasmas 22, nr 3 (marzec 2015): 032311. http://dx.doi.org/10.1063/1.4915525.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ogilvie, K. W., J. T. Steinberg, R. J. Fitzenreiter, C. J. Owen, A. J. Lazarus, W. M. Farrell i R. B. Torbert. "Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994". Geophysical Research Letters 23, nr 10 (15.05.1996): 1255–58. http://dx.doi.org/10.1029/96gl01069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Farrell, W. M., M. L. Kaiser i J. T. Steinberg. "Electrostatic instability in the central lunar wake: A process for replenishing the plasma void?" Geophysical Research Letters 24, nr 9 (1.05.1997): 1135–38. http://dx.doi.org/10.1029/97gl00878.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Nishino, Masaki N., Yoshifumi Saito, Hideo Tsunakawa, Futoshi Takahashi, Masaki Fujimoto, Yuki Harada, Shoichiro Yokota, Masaki Matsushima, Hidetoshi Shibuya i Hisayoshi Shimizu. "Electrons on closed field lines of lunar crustal fields in the solar wind wake". Icarus 250 (kwiecień 2015): 238–48. http://dx.doi.org/10.1016/j.icarus.2014.12.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wang, Y. C., J. Müller, W. H. Ip i U. Motschmann. "A 3D hybrid simulation study of the electromagnetic field distributions in the lunar wake". Icarus 216, nr 2 (grudzień 2011): 415–25. http://dx.doi.org/10.1016/j.icarus.2011.09.021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Nakagawa, Tomoko, i Masahide Iizima. "A reexamination of pitch angle diffusion of electrons at the boundary of the lunar wake". Earth, Planets and Space 58, nr 5 (28.04.2006): e17-e20. http://dx.doi.org/10.1186/bf03351945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Farrell, W. M., M. L. Kaiser, J. T. Steinberg i S. D. Bale. "A simple simulation of a plasma void: Applications to Wind observations of the lunar wake". Journal of Geophysical Research: Space Physics 103, A10 (1.10.1998): 23653–60. http://dx.doi.org/10.1029/97ja03717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Birch, Paul C., i Sandra C. Chapman. "Correction to “Particle-in-cell simulations of the lunar wake with high phase space resolution”". Geophysical Research Letters 28, nr 13 (1.07.2001): 2669. http://dx.doi.org/10.1029/2001gl012961.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Avery, David H., i Thomas A. Wehr. "Synchrony of sleep-wake cycles with lunar tidal cycles in a rapid-cycling bipolar patient". Bipolar Disorders 20, nr 4 (czerwiec 2018): 399–402. http://dx.doi.org/10.1111/bdi.12644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Farrell, W. M., R. J. Fitzenreiter, C. J. Owen, J. B. Byrnes, R. P. Lepping, K. W. Ogilvie i F. Neubauer. "Upstream ULF waves and energetic electrons associated with the lunar wake: Detection of precursor activity". Geophysical Research Letters 23, nr 10 (15.05.1996): 1271–74. http://dx.doi.org/10.1029/96gl01355.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Xu, Xiaojun, Hon-Cheng Wong, Yonghui Ma, Yi Wang, Pingbing Zuo, Meng Zhou, Ye Pang i Xiaohua Deng. "Anomalously high rate refilling in the near lunar wake caused by the Earth's bow shock". Journal of Geophysical Research: Space Physics 122, nr 9 (wrzesień 2017): 9102–14. http://dx.doi.org/10.1002/2016ja023505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kimura, Shinya, i Tomoko Nakagawa. "Electromagnetic full particle simulation of the electric field structure around the moon and the lunar wake". Earth, Planets and Space 60, nr 6 (czerwiec 2008): 591–99. http://dx.doi.org/10.1186/bf03353122.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Hutchinson, Ian H., i David M. Malaspina. "Prediction and Observation of Electron Instabilities and Phase Space Holes Concentrated in the Lunar Plasma Wake". Geophysical Research Letters 45, nr 9 (11.05.2018): 3838–45. http://dx.doi.org/10.1029/2017gl076880.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Bale, S. D., C. J. Owen, J. L. Bougeret, K. Goetz, P. J. Kellogg, R. P. Lepping, R. Manning i S. J. Monson. "Evidence of currents and unstable particle distributions in an extended region around the lunar plasma wake". Geophysical Research Letters 24, nr 11 (1.06.1997): 1427–30. http://dx.doi.org/10.1029/97gl01193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Dhanya, M. B., Anil Bhardwaj, Yoshifumi Futaana, Stas Barabash, Abhinaw Alok, Martin Wieser, Mats Holmström i Peter Wurz. "Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations". Icarus 271 (czerwiec 2016): 120–30. http://dx.doi.org/10.1016/j.icarus.2016.01.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Xu, Xiaojun, Hon‐Cheng Wong, Yonghui Ma, Yi Wang, Pingbing Zuo, Meng Zhou i Xiaohua Deng. "Observations of current sheets associated with solar wind reconnection exhausts passing through the near lunar wake". Journal of Geophysical Research: Space Physics 120, nr 11 (listopad 2015): 9246–55. http://dx.doi.org/10.1002/2015ja021614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii