Artykuły w czasopismach na temat „Lunar Soft-Landing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lunar Soft-Landing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bojun, Zhang, and Liu Zhanchao. "Iterative Guidance Algorithm for Lunar Soft Landing." Journal of Physics: Conference Series 2235, no. 1 (2022): 012017. http://dx.doi.org/10.1088/1742-6596/2235/1/012017.
Pełny tekst źródłaLin, Qing, and Jie Ren. "Investigation on the Horizontal Landing Velocity and Pitch Angle Impact on the Soft-Landing Dynamic Characteristics." International Journal of Aerospace Engineering 2022 (January 25, 2022): 1–16. http://dx.doi.org/10.1155/2022/3277581.
Pełny tekst źródłaShijie, Xu, and Zhu Jianfeng. "A new strategy for lunar soft landing." Journal of the Astronautical Sciences 55, no. 3 (2007): 373–87. http://dx.doi.org/10.1007/bf03256530.
Pełny tekst źródłaKim, Yeong-Bae, Hyun-Jae Jeong, Shin-Mu Park, Jae Hyuk Lim, and Hoon-Hee Lee. "Prediction and Validation of Landing Stability of a Lunar Lander by a Classification Map Based on Touchdown Landing Dynamics’ Simulation Considering Soft Ground." Aerospace 8, no. 12 (2021): 380. http://dx.doi.org/10.3390/aerospace8120380.
Pełny tekst źródłaWang, Dayi, Xiangyu Huang, and Yifeng Guan. "GNC system scheme for lunar soft landing spacecraft." Advances in Space Research 42, no. 2 (2008): 379–85. http://dx.doi.org/10.1016/j.asr.2007.08.031.
Pełny tekst źródłaBanerjee, Avijit, and Radhakant Padhi. "Multi-phase MPSP Guidance for Lunar Soft Landing." Transactions of the Indian National Academy of Engineering 5, no. 1 (2020): 61–74. http://dx.doi.org/10.1007/s41403-020-00090-1.
Pełny tekst źródłaPark, Bong-Gyun, Jong-Sun Ahn, and Min-Jea Tahk. "Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site." International Journal of Aeronautical and Space Sciences 12, no. 3 (2011): 288–95. http://dx.doi.org/10.5139/ijass.2011.12.3.288.
Pełny tekst źródłaQu, Mo Feng. "Lunar Soft - Landing Trajectory of Mechanics Optimization Based on the Improved Ant Colony Algorithm." Applied Mechanics and Materials 721 (December 2014): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.721.446.
Pełny tekst źródłaYin, Ke, Songlin Zhou, Qiao Sun, and Feng Gao. "Lunar Surface Fault-Tolerant Soft-Landing Performance and Experiment for a Six-Legged Movable Repetitive Lander." Sensors 21, no. 17 (2021): 5680. http://dx.doi.org/10.3390/s21175680.
Pełny tekst źródłaYuan, Qi, Heng Chen, Hong Nie, Guang Zheng, Chen Wang, and Likai Hao. "Soft-Landing Dynamic Analysis of a Manned Lunar Lander Em-Ploying Energy Absorption Materials of Carbon Nanotube Buckypaper." Materials 14, no. 20 (2021): 6202. http://dx.doi.org/10.3390/ma14206202.
Pełny tekst źródłaRijesh, M. P., G. Sijo, N. K. Philip, and P. Natarajan. "Geometrical Guidance Algorithm for Soft Landing on Lunar Surface." IFAC Proceedings Volumes 47, no. 1 (2014): 14–19. http://dx.doi.org/10.3182/20140313-3-in-3024.00093.
Pełny tekst źródłaZhou, Jingyang, Kok Lay Teo, Di Zhou, and Guohui Zhao. "Nonlinear optimal feedback control for lunar module soft landing." Journal of Global Optimization 52, no. 2 (2011): 211–27. http://dx.doi.org/10.1007/s10898-011-9659-4.
Pełny tekst źródłaChu, Huiping, Lin Ma, Kexin Wang, Zhijiang Shao, and Zhengyu Song. "Trajectory optimization for lunar soft landing with complex constraints." Advances in Space Research 60, no. 9 (2017): 2060–76. http://dx.doi.org/10.1016/j.asr.2017.07.024.
Pełny tekst źródłaLUO, Zongfu, Yunhe MENG, and Guojian TANG. "Lunar Soft-landing Trajectory Design Based on Evolutionary Strategy." Chinese Journal of Space Science 32, no. 1 (2012): 92. http://dx.doi.org/10.11728/cjss2012.01.092.
Pełny tekst źródłaYang, Bo, Jun Miao, and Yong Yang. "Terminal Sliding Mode Control of a Lunar Lander with Electric Propulsion." Applied Mechanics and Materials 494-495 (February 2014): 1195–201. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.1195.
Pełny tekst źródłaLiu, Hengxi, Yongzhi Wang, Shibo Wen, et al. "A New Blind Selection Approach for Lunar Landing Zones Based on Engineering Constraints Using Sliding Window." Remote Sensing 15, no. 12 (2023): 3184. http://dx.doi.org/10.3390/rs15123184.
Pełny tekst źródłaKislitsyna, Irina A., and Galina F. Malykhina. "Mathematical modeling of altimeter." ACTA IMEKO 4, no. 4 (2015): 16. http://dx.doi.org/10.21014/acta_imeko.v4i4.263.
Pełny tekst źródłaLu, Yun Tong, Chun Jie Wang, Ang Li, and Han Wang. "Multidisciplinary Design Optimization of a Lunar Lander’s Soft-Landing Gear." Applied Mechanics and Materials 42 (November 2010): 118–21. http://dx.doi.org/10.4028/www.scientific.net/amm.42.118.
Pełny tekst źródłaUTASHIMA, Masayoshi. "Optimization of Lunar Soft Landing with Constraints of Thrust Direction." Journal of the Japan Society for Aeronautical and Space Sciences 45, no. 527 (1997): 744–51. http://dx.doi.org/10.2322/jjsass1969.45.744.
Pełny tekst źródłaWei, Xiaohui, Qing Lin, Hong Nie, Ming Zhang, and Jie Ren. "Investigation on soft-landing dynamics of four-legged lunar lander." Acta Astronautica 101 (August 2014): 55–66. http://dx.doi.org/10.1016/j.actaastro.2014.04.001.
Pełny tekst źródłaITAGAKI, Haruaki. "B1 Towards the Realization of Lunar soft landing in Japan." Proceedings of the Space Engineering Conference 2001.9 (2001): 29–34. http://dx.doi.org/10.1299/jsmesec.2001.9.29.
Pełny tekst źródłaHuang, Guoqiang. "Global 4D Trajectory Optimization Design for Lunar Vertical Soft Landing." Chinese Journal of Space Science 34, no. 3 (2014): 313. http://dx.doi.org/10.11728/cjss2014.03.313.
Pełny tekst źródłaMou, N., J. Li, Z. Meng, L. Zhang, and W. Liu. "MULTI-FACTOR ANALYSIS FOR SELECTING LUNAR EXPLORATION SOFT LANDING AREA AND THE BEST CRUISE ROUTE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3 (April 30, 2018): 1291–98. http://dx.doi.org/10.5194/isprs-archives-xlii-3-1291-2018.
Pełny tekst źródłaAnthony Thomas, Digina Derose, Sahaya Cyril, and Smita Dange. "Intelligent Lunar Landing Site Recommender." International Journal of Engineering and Management Research 11, no. 2 (2021): 184–88. http://dx.doi.org/10.31033/ijemr.11.2.26.
Pełny tekst źródłaD’Ambrosio, Andrea, Andrea Carbone, Dario Spiller, and Fabio Curti. "PSO-Based Soft Lunar Landing with Hazard Avoidance: Analysis and Experimentation." Aerospace 8, no. 7 (2021): 195. http://dx.doi.org/10.3390/aerospace8070195.
Pełny tekst źródłaRemesh, N., R. V. Ramanan, and V. R. Lalithambika. "Fuel Optimum Lunar Soft Landing Trajectory Design Using Different Solution Schemes." International Review of Aerospace Engineering (IREASE) 9, no. 5 (2016): 131. http://dx.doi.org/10.15866/irease.v9i5.10119.
Pełny tekst źródłaAravind, G., S. Vishnu, K. V. Amarnath, et al. "Design, Analysis and Stability testing of Lunar Lander for Soft-Landing." Materials Today: Proceedings 24 (2020): 1235–43. http://dx.doi.org/10.1016/j.matpr.2020.04.438.
Pełny tekst źródłaZhang, Bo, Shuo Tang, and Binfeng Pan. "Multi-constrained suboptimal powered descent guidance for lunar pinpoint soft landing." Aerospace Science and Technology 48 (January 2016): 203–13. http://dx.doi.org/10.1016/j.ast.2015.11.018.
Pełny tekst źródłaWei, Wei, Shijie Zhang, Ximing Zhao, et al. "Research on Aluminum Honeycomb Buffer Device for Soft Landing on the Lunar Surface." International Journal of Aerospace Engineering 2021 (October 31, 2021): 1–20. http://dx.doi.org/10.1155/2021/7686460.
Pełny tekst źródłaSachan, Kapil, and Radhakant Padhi. "Waypoint Constrained Multi-Phase Optimal Guidance of Spacecraft for Soft Lunar Landing." Unmanned Systems 07, no. 02 (2019): 83–104. http://dx.doi.org/10.1142/s230138501950002x.
Pełny tekst źródłaZhang, Lihua. "Development and Prospect of Chinese Lunar Relay Communication Satellite." Space: Science & Technology 2021 (April 27, 2021): 1–14. http://dx.doi.org/10.34133/2021/3471608.
Pełny tekst źródłaYu, Qiang, Tianshu Wang, and Zirui Li. "Rapid Simulation of 3D Liquid Sloshing in the Lunar Soft-Landing Spacecraft." AIAA Journal 57, no. 10 (2019): 4504–13. http://dx.doi.org/10.2514/1.j058160.
Pełny tekst źródłaAhn, Jong-Sun, Bong-Gyun Park, and Min-Jea Tahk. "Two-dimensional Trajectory Optimization of a Soft Lunar Landing from a Parking Orbit Considering a Landing Site." IFAC Proceedings Volumes 43, no. 15 (2010): 178–83. http://dx.doi.org/10.3182/20100906-5-jp-2022.00031.
Pełny tekst źródłaZhang, Xue Yuan. "Optimal Control Strategy at the Main Reduction Process for Lunar Spacecraft Soft Landing." Applied Mechanics and Materials 775 (July 2015): 334–38. http://dx.doi.org/10.4028/www.scientific.net/amm.775.334.
Pełny tekst źródłaRemesh, N., R. V. Ramanan, and V. R. Lalithambika. "A Novel Indirect Scheme for Optimal Lunar Soft Landing at a Target Site." Journal of The Institution of Engineers (India): Series C 102, no. 6 (2021): 1379–93. http://dx.doi.org/10.1007/s40032-021-00748-x.
Pełny tekst źródłaWu, Xiang, Kanjian Zhang, Xin Xin, and Ming Cheng. "Fuel-optimal control for soft lunar landing based on a quadratic regularization approach." European Journal of Control 49 (September 2019): 84–93. http://dx.doi.org/10.1016/j.ejcon.2019.02.003.
Pełny tekst źródłaZheng, Guang, Hong Nie, Jinbao Chen, Chuanzhi Chen, and Heow Pueh Lee. "Dynamic analysis of lunar lander during soft landing using explicit finite element method." Acta Astronautica 148 (July 2018): 69–81. http://dx.doi.org/10.1016/j.actaastro.2018.04.014.
Pełny tekst źródłaBorse, Janhavi H., Dipti D. Patil, Vinod Kumar, and Sudhir Kumar. "Soft Landing Parameter Measurements for Candidate Navigation Trajectories Using Deep Learning and AI-Enabled Planetary Descent." Mathematical Problems in Engineering 2022 (August 27, 2022): 1–14. http://dx.doi.org/10.1155/2022/2886312.
Pełny tekst źródłaStrashnov, E. V., and M. V. Mikhaylyuk. "Simulation of Spacecraft Moon Landing Control in Virtual Environment Complexes." Mekhatronika, Avtomatizatsiya, Upravlenie 24, no. 3 (2023): 158–67. http://dx.doi.org/10.17587/mau.24.158-167.
Pełny tekst źródłaWang, J., J. Li, S. Wang, et al. "COMPUTER VISION IN THE TELEOPERATION OF THE YUTU-2 ROVER." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (August 3, 2020): 595–602. http://dx.doi.org/10.5194/isprs-annals-v-3-2020-595-2020.
Pełny tekst źródłaLiu, Yuanyuan, Shunguang Song, and Chunjie Wang. "Multi-objective optimization on the shock absorber design for the lunar probe using nondominated sorting genetic algorithm II." International Journal of Advanced Robotic Systems 14, no. 4 (2017): 172988141772046. http://dx.doi.org/10.1177/1729881417720467.
Pełny tekst źródłaDong, Zejun, Xuan Feng, Haoqiu Zhou, et al. "Properties Analysis of Lunar Regolith at Chang’E-4 Landing Site Based on 3D Velocity Spectrum of Lunar Penetrating Radar." Remote Sensing 12, no. 4 (2020): 629. http://dx.doi.org/10.3390/rs12040629.
Pełny tekst źródłaYue, Zongyu, Ke Shi, Gregory Michael, et al. "Chronology of the Basalt Units Surrounding Chang’e-4 Landing Area." Remote Sensing 14, no. 1 (2021): 49. http://dx.doi.org/10.3390/rs14010049.
Pełny tekst źródłaMoon, Yongjun, and Sejin Kwon. "Lunar soft landing with minimum-mass propulsion system using H2O2/kerosene bipropellant rocket system." Acta Astronautica 99 (June 2014): 153–57. http://dx.doi.org/10.1016/j.actaastro.2014.02.003.
Pełny tekst źródłaMa, Lin, Zhijiang Shao, Weifeng Chen, and Zhengyu Song. "Trajectory optimization for lunar soft landing with a Hamiltonian-based adaptive mesh refinement strategy." Advances in Engineering Software 100 (October 2016): 266–76. http://dx.doi.org/10.1016/j.advengsoft.2016.08.002.
Pełny tekst źródłaRamanan, R. V., and Madan Lal. "Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits." Journal of Earth System Science 114, no. 6 (2005): 807–13. http://dx.doi.org/10.1007/bf02715967.
Pełny tekst źródłaLatif, Shaikh Abdul, Ibrahim M. Mehedi, Ahmed I. M. Iskanderani, Mahendiran T. Vellingiri, and Rahtul Jannat. "Hybrid Approach Named HUAPO Technique to Guide the Lander Based on the Landing Trajectory Generation for Unmanned Lunar Mission." Computational Intelligence and Neuroscience 2022 (June 7, 2022): 1–16. http://dx.doi.org/10.1155/2022/4698936.
Pełny tekst źródłaWu, Bo, Fei Li, Han Hu, et al. "Topographic and Geomorphological Mapping and Analysis of the Chang'E-4 Landing Site on the Far Side of the Moon." Photogrammetric Engineering & Remote Sensing 86, no. 4 (2020): 247–58. http://dx.doi.org/10.14358/pers.86.4.247.
Pełny tekst źródłaHan, SongTao, ZhongKai Zhang, Jing Sun, et al. "Lunar Radiometric Measurement Based on Observing China Chang’E-3 Lander with VLBI—First Insight." Advances in Astronomy 2019 (June 2, 2019): 1–10. http://dx.doi.org/10.1155/2019/7018620.
Pełny tekst źródłaRemesh, N., R. V. Ramanan, and V. R. Lalithambika. "Fuel-optimal and Energy-optimal guidance schemes for lunar soft landing at a desired location." Advances in Space Research 67, no. 6 (2021): 1787–804. http://dx.doi.org/10.1016/j.asr.2020.12.030.
Pełny tekst źródła