Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Lunar Soft-Landing.

Artykuły w czasopismach na temat „Lunar Soft-Landing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lunar Soft-Landing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lin, Qing, and Jie Ren. "Investigation on the Horizontal Landing Velocity and Pitch Angle Impact on the Soft-Landing Dynamic Characteristics." International Journal of Aerospace Engineering 2022 (January 25, 2022): 1–16. http://dx.doi.org/10.1155/2022/3277581.

Pełny tekst źródła
Streszczenie:
The dynamic analysis of the soft landing of the lunar probe is very important to the design of the probe. The initial movement and attitude parameters of the probe during landing have a direct influence on the landing impact. In order to investigate the lunar probe soft-landing dynamic impact by different initial horizontal velocities, pitch angles, and inclinations of the lunar slope, an inertial force-based 7-DOF soft-landing dynamic model is applied under two conditions: the upward and downward slope landing surfaces. The impact on the dynamic characteristics of soft landing is analyzed in
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Yeong-Bae, Hyun-Jae Jeong, Shin-Mu Park, Jae Hyuk Lim, and Hoon-Hee Lee. "Prediction and Validation of Landing Stability of a Lunar Lander by a Classification Map Based on Touchdown Landing Dynamics’ Simulation Considering Soft Ground." Aerospace 8, no. 12 (2021): 380. http://dx.doi.org/10.3390/aerospace8120380.

Pełny tekst źródła
Streszczenie:
In this paper, a method for predicting the landing stability of a lunar lander by a classification map of the landing stability is proposed, considering the soft soil characteristics and the slope angle of the lunar surface. First, the landing stability condition in terms of the safe (=stable), sliding (=unstable), and tip-over (=statically unstable) possibilities was checked by dropping a lunar lander onto flat lunar surfaces through finite-element (FE) simulation according to the slope angle, friction coefficient, and soft/rigid ground, while the vertical touchdown velocity was maintained at
Style APA, Harvard, Vancouver, ISO itp.
3

Bojun, Zhang, and Liu Zhanchao. "Iterative Guidance Algorithm for Lunar Soft Landing." Journal of Physics: Conference Series 2235, no. 1 (2022): 012017. http://dx.doi.org/10.1088/1742-6596/2235/1/012017.

Pełny tekst źródła
Streszczenie:
Abstract A closed-form explicit guidance algorithm for the deceleration, attitude adjustment and final landing phases before lunar probe soft landing is presented in this paper. Guidance with a variable-thrust engine is extended from the iterative guidance mode (IGM) to satisfy the terminal velocity, position, and attitude constraints. The closed form expression, obtained by integrating the acceleration and shutdown time, is analysed to obtain an explicit ex-pression for the velocity and position requirements and vertical touchdown of the spacecraft toward a designated landing site with high t
Style APA, Harvard, Vancouver, ISO itp.
4

Banks, Michael. "Firefly Aerospace achieves lunar landing." Physics World 38, no. 4 (2025): 9iii. https://doi.org/10.1088/2058-7058/38/04/07.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shijie, Xu, and Zhu Jianfeng. "A new strategy for lunar soft landing." Journal of the Astronautical Sciences 55, no. 3 (2007): 373–87. http://dx.doi.org/10.1007/bf03256530.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Qu, Mo Feng. "Lunar Soft - Landing Trajectory of Mechanics Optimization Based on the Improved Ant Colony Algorithm." Applied Mechanics and Materials 721 (December 2014): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.721.446.

Pełny tekst źródła
Streszczenie:
Based on research carried out for the most fuel-lunar soft landing trajectory optimization problem. First, by improving the function approximation method, the lunar soft landing trajectory optimization problem into a parameter optimization problem, and the optimization variables and state variables have a clear physical meaning. Then use the decimal ant colony algorithm adds local search strategy to study the optimization problem. Finally, the optimization algorithm to optimize term direction angle simulation and error analysis.
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Dayi, Xiangyu Huang, and Yifeng Guan. "GNC system scheme for lunar soft landing spacecraft." Advances in Space Research 42, no. 2 (2008): 379–85. http://dx.doi.org/10.1016/j.asr.2007.08.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Banerjee, Avijit, and Radhakant Padhi. "Multi-phase MPSP Guidance for Lunar Soft Landing." Transactions of the Indian National Academy of Engineering 5, no. 1 (2020): 61–74. http://dx.doi.org/10.1007/s41403-020-00090-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yin, Ke, Songlin Zhou, Qiao Sun, and Feng Gao. "Lunar Surface Fault-Tolerant Soft-Landing Performance and Experiment for a Six-Legged Movable Repetitive Lander." Sensors 21, no. 17 (2021): 5680. http://dx.doi.org/10.3390/s21175680.

Pełny tekst źródła
Streszczenie:
The cascading launch and cooperative work of lander and rover are the pivotal methods to achieve lunar zero-distance exploration. The separated design results in a heavy system mass that requires more launching costs and a limited exploration area that is restricted to the vicinity of the immovable lander. To solve this problem, we have designed a six-legged movable repetitive lander, called “HexaMRL”, which congenitally integrates the function of both the lander and rover. However, achieving a buffered landing after a failure of the integrated drive units (IDUs) in the harsh lunar environment
Style APA, Harvard, Vancouver, ISO itp.
10

Yuan, Qi, Heng Chen, Hong Nie, Guang Zheng, Chen Wang, and Likai Hao. "Soft-Landing Dynamic Analysis of a Manned Lunar Lander Em-Ploying Energy Absorption Materials of Carbon Nanotube Buckypaper." Materials 14, no. 20 (2021): 6202. http://dx.doi.org/10.3390/ma14206202.

Pełny tekst źródła
Streszczenie:
With the rapid development of the aerospace field, traditional energy absorption materials are becoming more and more inadequate and cannot meet the requirements of having a light weight, high energy absorption efficiency, and high energy absorption density. Since existing studies have shown that carbon nanotube (CNT) buckypaper is a promising candidate for energy absorption, owing to its extremely high energy absorption efficiency and remarkable mass density of energy absorption, this study explores the application of buckypaper as the landing buffer material in a manned lunar lander. Firstly
Style APA, Harvard, Vancouver, ISO itp.
11

Park, Bong-Gyun, Jong-Sun Ahn, and Min-Jea Tahk. "Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site." International Journal of Aeronautical and Space Sciences 12, no. 3 (2011): 288–95. http://dx.doi.org/10.5139/ijass.2011.12.3.288.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Yang, Bo, Jun Miao, and Yong Yang. "Terminal Sliding Mode Control of a Lunar Lander with Electric Propulsion." Applied Mechanics and Materials 494-495 (February 2014): 1195–201. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.1195.

Pełny tekst źródła
Streszczenie:
This paper presents an attitude control method based on electric propulsion systems for the lunar lander that considers the important characteristics of nonlinearity and uncertainty of lunar soft landing maneuvers with large attitudes. The attitude control law is designed according to the terminal sliding mode variable structure control method. A soft lunar landing utilizing the proposed control method is simulated, and the results show that this attitude control system demonstrates superior global robustness, consumes less propellant, and can achieve higher precision than a conventional chemi
Style APA, Harvard, Vancouver, ISO itp.
13

Kislitsyna, Irina A., and Galina F. Malykhina. "Mathematical modeling of altimeter." ACTA IMEKO 4, no. 4 (2015): 16. http://dx.doi.org/10.21014/acta_imeko.v4i4.263.

Pełny tekst źródła
Streszczenie:
The aim of the survey is to simulate photon altimeter designed for a soft landing on the lunar surface. Simulation of the process of scattering of gamma rays from the lunar surface with a typical composition of the lunar soil was implemented.
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Hengxi, Yongzhi Wang, Shibo Wen, et al. "A New Blind Selection Approach for Lunar Landing Zones Based on Engineering Constraints Using Sliding Window." Remote Sensing 15, no. 12 (2023): 3184. http://dx.doi.org/10.3390/rs15123184.

Pełny tekst źródła
Streszczenie:
Deep space exploration has risen in interest among scientists in recent years, with soft landings being one of the most straightforward ways to acquire knowledge about the Moon. In general, landing mission success depends on the selection of landing zones, and there are currently few effective quantitative models that can be used to select suitable landing zones. When automatic landing zones are selected, the grid method used for data partitioning tends to miss potentially suitable landing sites between grids. Therefore, this study proposes a new engineering-constrained approach for landing zo
Style APA, Harvard, Vancouver, ISO itp.
15

Rijesh, M. P., G. Sijo, N. K. Philip, and P. Natarajan. "Geometrical Guidance Algorithm for Soft Landing on Lunar Surface." IFAC Proceedings Volumes 47, no. 1 (2014): 14–19. http://dx.doi.org/10.3182/20140313-3-in-3024.00093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zhou, Jingyang, Kok Lay Teo, Di Zhou, and Guohui Zhao. "Nonlinear optimal feedback control for lunar module soft landing." Journal of Global Optimization 52, no. 2 (2011): 211–27. http://dx.doi.org/10.1007/s10898-011-9659-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Chu, Huiping, Lin Ma, Kexin Wang, Zhijiang Shao, and Zhengyu Song. "Trajectory optimization for lunar soft landing with complex constraints." Advances in Space Research 60, no. 9 (2017): 2060–76. http://dx.doi.org/10.1016/j.asr.2017.07.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

LUO, Zongfu, Yunhe MENG, and Guojian TANG. "Lunar Soft-landing Trajectory Design Based on Evolutionary Strategy." Chinese Journal of Space Science 32, no. 1 (2012): 92. http://dx.doi.org/10.11728/cjss2012.01.092.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Lu, Yun Tong, Chun Jie Wang, Ang Li, and Han Wang. "Multidisciplinary Design Optimization of a Lunar Lander’s Soft-Landing Gear." Applied Mechanics and Materials 42 (November 2010): 118–21. http://dx.doi.org/10.4028/www.scientific.net/amm.42.118.

Pełny tekst źródła
Streszczenie:
The rapid development of Multidisciplinary Design Optimization (MDO) approach can simultaneously guarantee the cut of cost on design and optimal performance of spacecraft. Based on the theory of Collaborative Optimization approach (CO) of MDO, present paper proposes the method of CO by integrating Pro/E(3D modeling), Patran/Nastran(FEM analysis) and ADAMS(multi-body dynamic analysis) with the Isight software. In the analysis of the soft-landing gear of Lunar Lander, this method can optimize the mass of the landing gear and meanwhile ensures the reliability of structure statics, structure dynam
Style APA, Harvard, Vancouver, ISO itp.
20

Mou, N., J. Li, Z. Meng, L. Zhang, and W. Liu. "MULTI-FACTOR ANALYSIS FOR SELECTING LUNAR EXPLORATION SOFT LANDING AREA AND THE BEST CRUISE ROUTE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3 (April 30, 2018): 1291–98. http://dx.doi.org/10.5194/isprs-archives-xlii-3-1291-2018.

Pełny tekst źródła
Streszczenie:
Selecting the right soft landing area and planning a reasonable cruise route are the basic tasks of lunar exploration. In this paper, the Von Karman crater in the Antarctic Aitken basin on the back of the moon is used as the study area, and multi-factor analysis is used to evaluate the landing area and cruise route of lunar exploration. The evaluation system mainly includes the factors such as the density of craters, the impact area of craters, the formation of the whole area and the formation of some areas, such as the vertical structure, rock properties and the content of (FeO&thinsp
Style APA, Harvard, Vancouver, ISO itp.
21

UTASHIMA, Masayoshi. "Optimization of Lunar Soft Landing with Constraints of Thrust Direction." Journal of the Japan Society for Aeronautical and Space Sciences 45, no. 527 (1997): 744–51. http://dx.doi.org/10.2322/jjsass1969.45.744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Wei, Xiaohui, Qing Lin, Hong Nie, Ming Zhang, and Jie Ren. "Investigation on soft-landing dynamics of four-legged lunar lander." Acta Astronautica 101 (August 2014): 55–66. http://dx.doi.org/10.1016/j.actaastro.2014.04.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

ITAGAKI, Haruaki. "B1 Towards the Realization of Lunar soft landing in Japan." Proceedings of the Space Engineering Conference 2001.9 (2001): 29–34. http://dx.doi.org/10.1299/jsmesec.2001.9.29.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Huang, Guoqiang. "Global 4D Trajectory Optimization Design for Lunar Vertical Soft Landing." Chinese Journal of Space Science 34, no. 3 (2014): 313. http://dx.doi.org/10.11728/cjss2014.03.313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

D’Ambrosio, Andrea, Andrea Carbone, Dario Spiller, and Fabio Curti. "PSO-Based Soft Lunar Landing with Hazard Avoidance: Analysis and Experimentation." Aerospace 8, no. 7 (2021): 195. http://dx.doi.org/10.3390/aerospace8070195.

Pełny tekst źródła
Streszczenie:
The problem of real-time optimal guidance is extremely important for successful autonomous missions. In this paper, the last phases of autonomous lunar landing trajectories are addressed. The proposed guidance is based on the Particle Swarm Optimization, and the differential flatness approach, which is a subclass of the inverse dynamics technique. The trajectory is approximated by polynomials and the control policy is obtained in an analytical closed form solution, where boundary and dynamical constraints are a priori satisfied. Although this procedure leads to sub-optimal solutions, it result
Style APA, Harvard, Vancouver, ISO itp.
26

Anthony Thomas, Digina Derose, Sahaya Cyril, and Smita Dange. "Intelligent Lunar Landing Site Recommender." International Journal of Engineering and Management Research 11, no. 2 (2021): 184–88. http://dx.doi.org/10.31033/ijemr.11.2.26.

Pełny tekst źródła
Streszczenie:
Space exploration is brewing to be one of the most sought after fields in today’s world with each country pooling in resources and skilled minds to be one step ahead of the other. The core aspect of space exploration is exoplanet exploration, i.e., by sending unmanned rovers or manned spaceships to planets and celestial bodies within and beyond our solar system to determine habitable planets. Landscape inspection and traversal is the core feature of any planetary exploration mission. It is often a strenuous task to carry out a machine learning experiment on an extraterrestrial surface like the
Style APA, Harvard, Vancouver, ISO itp.
27

Remesh, N., R. V. Ramanan, and V. R. Lalithambika. "Fuel Optimum Lunar Soft Landing Trajectory Design Using Different Solution Schemes." International Review of Aerospace Engineering (IREASE) 9, no. 5 (2016): 131. http://dx.doi.org/10.15866/irease.v9i5.10119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Aravind, G., S. Vishnu, K. V. Amarnath, et al. "Design, Analysis and Stability testing of Lunar Lander for Soft-Landing." Materials Today: Proceedings 24 (2020): 1235–43. http://dx.doi.org/10.1016/j.matpr.2020.04.438.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Zhang, Bo, Shuo Tang, and Binfeng Pan. "Multi-constrained suboptimal powered descent guidance for lunar pinpoint soft landing." Aerospace Science and Technology 48 (January 2016): 203–13. http://dx.doi.org/10.1016/j.ast.2015.11.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wei, Wei, Shijie Zhang, Ximing Zhao, et al. "Research on Aluminum Honeycomb Buffer Device for Soft Landing on the Lunar Surface." International Journal of Aerospace Engineering 2021 (October 31, 2021): 1–20. http://dx.doi.org/10.1155/2021/7686460.

Pełny tekst źródła
Streszczenie:
To obtain the resources of the moon, humans have launched a series of exploration activities on the moon, and the landing buffer device is an indispensable device on the lander required to perform lunar surface exploration missions. It can effectively protect the lander during landing scientific payloads such as instruments on the lander. Based on the mechanical properties and deformation mechanism of the aluminum honeycomb as buffer material, this paper compares and analyzes different simulation schemes and finally establishes the bonding model of the honeycomb by using the discrete element m
Style APA, Harvard, Vancouver, ISO itp.
31

Zhang, Lihua. "Development and Prospect of Chinese Lunar Relay Communication Satellite." Space: Science & Technology 2021 (April 27, 2021): 1–14. http://dx.doi.org/10.34133/2021/3471608.

Pełny tekst źródła
Streszczenie:
Relay communication satellites play a very important role on the lunar far side and pole areas exploration missions. Queqiao relay communication satellite was developed to provide relay communication support for the lander and the rover of Chang’e-4 mission landing on the far side of the Moon. From entering into the halo mission orbit around Earth-Moon libration point 2 on June 14, 2018, it has operated on the orbit more than thirty months. It worked very well and provided reliable, continuous relay communication support for the lander and the rover to accomplish the goals of Chang’e-4 lunar f
Style APA, Harvard, Vancouver, ISO itp.
32

Sachan, Kapil, and Radhakant Padhi. "Waypoint Constrained Multi-Phase Optimal Guidance of Spacecraft for Soft Lunar Landing." Unmanned Systems 07, no. 02 (2019): 83–104. http://dx.doi.org/10.1142/s230138501950002x.

Pełny tekst źródła
Streszczenie:
A waypoint constrained multi-phase nonlinear optimal guidance scheme is presented in this paper for the soft landing of a spacecraft on the Lunar surface by using the recently developed computationally efficient Generalized Model Predictive Static Programming (G-MPSP). The proposed guidance ensures that the spacecraft passes through two waypoints, which is a strong requirement to facilitate proper landing site detection by the on-board camera for mission safety. Constraints that are required at the waypoints as well as at the terminal point include position, velocity, and attitude of the space
Style APA, Harvard, Vancouver, ISO itp.
33

Yu, Qiang, Tianshu Wang, and Zirui Li. "Rapid Simulation of 3D Liquid Sloshing in the Lunar Soft-Landing Spacecraft." AIAA Journal 57, no. 10 (2019): 4504–13. http://dx.doi.org/10.2514/1.j058160.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ahn, Jong-Sun, Bong-Gyun Park, and Min-Jea Tahk. "Two-dimensional Trajectory Optimization of a Soft Lunar Landing from a Parking Orbit Considering a Landing Site." IFAC Proceedings Volumes 43, no. 15 (2010): 178–83. http://dx.doi.org/10.3182/20100906-5-jp-2022.00031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Strashnov, E. V., and M. V. Mikhaylyuk. "Simulation of Spacecraft Moon Landing Control in Virtual Environment Complexes." Mekhatronika, Avtomatizatsiya, Upravlenie 24, no. 3 (2023): 158–67. http://dx.doi.org/10.17587/mau.24.158-167.

Pełny tekst źródła
Streszczenie:
The paper considers the task for simulation of final stage spacecraft landing on the Moon in virtual environment systems. To solve this task, methods and algorithms are proposed for the lunar module motion control with the implementation of fast attitude maneuvers and minimum fuel consumption during its deceleration. The spacecraft control is based on virtual sensors feedback and makes it possible to implement stabilization, reorientation, deceleration, maneuvers, hovering and soft landing of the spacecraft on the Moon. The work involves virtual reality technologies with the implementation of
Style APA, Harvard, Vancouver, ISO itp.
36

Wang, J., J. Li, S. Wang, et al. "COMPUTER VISION IN THE TELEOPERATION OF THE YUTU-2 ROVER." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (August 3, 2020): 595–602. http://dx.doi.org/10.5194/isprs-annals-v-3-2020-595-2020.

Pełny tekst źródła
Streszczenie:
Abstract. On January 3, 2019, the Chang'e-4 (CE-4) probe successfully landed in the Von Kármán crater inside the South Pole-Aitken (SPA) basin. With the support of a relay communication satellite "Queqiao" launched in 2018 and located at the Earth-Moon L2 liberation point, the lander and the Yutu-2 rover carried out in-situ exploration and patrol surveys, respectively, and were able to make a series of important scientific discoveries. Owing to the complexity and unpredictability of the lunar surface, teleoperation has become the most important control method for the operation of the rover. Co
Style APA, Harvard, Vancouver, ISO itp.
37

Borse, Janhavi H., Dipti D. Patil, Vinod Kumar, and Sudhir Kumar. "Soft Landing Parameter Measurements for Candidate Navigation Trajectories Using Deep Learning and AI-Enabled Planetary Descent." Mathematical Problems in Engineering 2022 (August 27, 2022): 1–14. http://dx.doi.org/10.1155/2022/2886312.

Pełny tekst źródła
Streszczenie:
Smart instruments, sensors, and AI technologies are playing an important role in many fields such as medical science, Earth science, astronomy physics, and space study. This article attempts to study the role of sensors, instruments, and AI (artificial intelligence) based smart technologies in lunar missions during navigation of trajectories. Lunar landing missions usually divide the power descent phase into three to four sub-phases. Each sub-phase has its own set of initial and final constraints for the desired system state. The landing systems depend on human competencies for making the most
Style APA, Harvard, Vancouver, ISO itp.
38

Zhang, Xue Yuan. "Optimal Control Strategy at the Main Reduction Process for Lunar Spacecraft Soft Landing." Applied Mechanics and Materials 775 (July 2015): 334–38. http://dx.doi.org/10.4028/www.scientific.net/amm.775.334.

Pełny tekst źródła
Streszczenie:
According to the law of energy conservation and the second law of Kepler, this paper obtains the spacecraft velocity in perilune and apolune. Based on trajectory inversion thought, this paper obtains position and velocity direction in the perilune and apolune. For the five sub stages of soft landing, this paper discusses the optimal control strategy: establishing optimization model of genetic algorithm for the main deceleration section, the terminal constraint condition is reflected on the fitness function through the penalty function, combined with linear iterative thought, the winner engine
Style APA, Harvard, Vancouver, ISO itp.
39

Remesh, N., R. V. Ramanan, and V. R. Lalithambika. "A Novel Indirect Scheme for Optimal Lunar Soft Landing at a Target Site." Journal of The Institution of Engineers (India): Series C 102, no. 6 (2021): 1379–93. http://dx.doi.org/10.1007/s40032-021-00748-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Wu, Xiang, Kanjian Zhang, Xin Xin, and Ming Cheng. "Fuel-optimal control for soft lunar landing based on a quadratic regularization approach." European Journal of Control 49 (September 2019): 84–93. http://dx.doi.org/10.1016/j.ejcon.2019.02.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Zheng, Guang, Hong Nie, Jinbao Chen, Chuanzhi Chen, and Heow Pueh Lee. "Dynamic analysis of lunar lander during soft landing using explicit finite element method." Acta Astronautica 148 (July 2018): 69–81. http://dx.doi.org/10.1016/j.actaastro.2018.04.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Liu, Yuanyuan, Shunguang Song, and Chunjie Wang. "Multi-objective optimization on the shock absorber design for the lunar probe using nondominated sorting genetic algorithm II." International Journal of Advanced Robotic Systems 14, no. 4 (2017): 172988141772046. http://dx.doi.org/10.1177/1729881417720467.

Pełny tekst źródła
Streszczenie:
In this article, the design on the shock absorber of the lunar probe soft landing can be considered as a single- or multi-objective optimization problem. Here, the optimized objective parameters include the maximum toppling stability, defined as Dmin, and the minimum stroke of primary strut energy absorption, SPmax. However, the two optimized variables are conflict objectives. In order to give an overall consideration about the multi-performances of landing, the multi-objective optimization strategy is proposed and nondominated sorting genetic algorithm II is employed to find the best decision
Style APA, Harvard, Vancouver, ISO itp.
43

Yue, Zongyu, Ke Shi, Gregory Michael, et al. "Chronology of the Basalt Units Surrounding Chang’e-4 Landing Area." Remote Sensing 14, no. 1 (2021): 49. http://dx.doi.org/10.3390/rs14010049.

Pełny tekst źródła
Streszczenie:
The Chang’e-4 (CE-4) lunar probe, the first soft landing spacecraft on the far side of the Moon, successfully landed in the Von Kármán crater on 3 January 2019. Geological studies of the landing area have been conducted and more intensive studies will be carried out with the in situ measured data. The chronological study of the maria basalt surrounding the CE-4 landing area is significant to the related studies. Currently, the crater size-frequency distribution (CSFD) technique is the most popular method to derive absolute model ages (AMAs) of geological units where no returned sample is avail
Style APA, Harvard, Vancouver, ISO itp.
44

Dong, Zejun, Xuan Feng, Haoqiu Zhou, et al. "Properties Analysis of Lunar Regolith at Chang’E-4 Landing Site Based on 3D Velocity Spectrum of Lunar Penetrating Radar." Remote Sensing 12, no. 4 (2020): 629. http://dx.doi.org/10.3390/rs12040629.

Pełny tekst źródła
Streszczenie:
The Chinese Chang’E-4 mission for moon exploration has been successfully completed. The Chang’E-4 probe achieved the first-ever soft landing on the floor of Von Kármán crater (177.59°E, 45.46°S) of the South Pole-Aitken (SPA) basin on January 3, 2019. Yutu-2 rover is mounted with several scientific instruments including a lunar penetrating radar (LPR), which is an effective instrument to detect the lunar subsurface structure. During the interpretation of LPR data, subsurface velocity of electromagnetic waves is a vital parameter necessary for stratigraphic division and computing other properti
Style APA, Harvard, Vancouver, ISO itp.
45

Gu, Yidong, and Jin Ba. "Space exploration in China." Journal of Physics: Conference Series 2877, no. 1 (2024): 012049. http://dx.doi.org/10.1088/1742-6596/2877/1/012049.

Pełny tekst źródła
Streszczenie:
Abstract In the past 20 years, China has implemented Manned Space Engineering, Lunar and Mars exploration missions, becoming an active participant in human space travel and exploration. So far China has established its Space Station in 2022, continuing to carry out large-scale space science research for the next 10-15 years. China has successfully achieved the soft landing on the lunar, far side of the Moon and on the Mars surface, obtained 1.73 kg of lunar sample, and will also implement the lunar Antarctic sample return and Mars sample return mission later. The exploration missions for the a
Style APA, Harvard, Vancouver, ISO itp.
46

Moon, Yongjun, and Sejin Kwon. "Lunar soft landing with minimum-mass propulsion system using H2O2/kerosene bipropellant rocket system." Acta Astronautica 99 (June 2014): 153–57. http://dx.doi.org/10.1016/j.actaastro.2014.02.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ma, Lin, Zhijiang Shao, Weifeng Chen, and Zhengyu Song. "Trajectory optimization for lunar soft landing with a Hamiltonian-based adaptive mesh refinement strategy." Advances in Engineering Software 100 (October 2016): 266–76. http://dx.doi.org/10.1016/j.advengsoft.2016.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Ramanan, R. V., and Madan Lal. "Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits." Journal of Earth System Science 114, no. 6 (2005): 807–13. http://dx.doi.org/10.1007/bf02715967.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Han, SongTao, ZhongKai Zhang, Jing Sun, et al. "Lunar Radiometric Measurement Based on Observing China Chang’E-3 Lander with VLBI—First Insight." Advances in Astronomy 2019 (June 2, 2019): 1–10. http://dx.doi.org/10.1155/2019/7018620.

Pełny tekst źródła
Streszczenie:
China Chang’E-3 performed soft landing at the plains of Sinus Iridum on lunar surface on December 14th 2013 successfully; it opened a new window for observing lunar surface with radiometric tracking which many lunar scientific researchers always pursue for. Since July 2014, OCEL (Observing Chang’E-3 Lander with VLBI) project has been conducted jointly by IVS (International VLBI Service of Geodesy and Astrometry) and BACC (Beijing Aerospace Control Center), a global IVS R&D network augmented with two China Deep Space Stations configured for OCEL. This paper presents the current status and p
Style APA, Harvard, Vancouver, ISO itp.
50

Wu, Bo, Fei Li, Han Hu, et al. "Topographic and Geomorphological Mapping and Analysis of the Chang'E-4 Landing Site on the Far Side of the Moon." Photogrammetric Engineering & Remote Sensing 86, no. 4 (2020): 247–58. http://dx.doi.org/10.14358/pers.86.4.247.

Pełny tekst źródła
Streszczenie:
The Chinese lunar probe Chang'E-4 successfully landed in the Von Kármán crater on the far side of the Moon. This paper presents the topographic and geomorphological mapping and their joint analysis for selecting the Chang'E-4 landing site in the Von Kármán crater. A digital topographic model (<small>DTM</small>) of the Von Kármán crater, with a spatial resolution of 30 m, was generated through the integrated processing of Chang'E-2 images (7 m/pixel) and Lunar Reconnaissance Orbiter (<small>LRO</small>) Laser Altimeter (<small>LOLA</small>) data. Slope maps
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!