Gotowa bibliografia na temat „Lunar Soft-Landing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Lunar Soft-Landing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Lunar Soft-Landing"
Bojun, Zhang, i Liu Zhanchao. "Iterative Guidance Algorithm for Lunar Soft Landing". Journal of Physics: Conference Series 2235, nr 1 (1.05.2022): 012017. http://dx.doi.org/10.1088/1742-6596/2235/1/012017.
Pełny tekst źródłaLin, Qing, i Jie Ren. "Investigation on the Horizontal Landing Velocity and Pitch Angle Impact on the Soft-Landing Dynamic Characteristics". International Journal of Aerospace Engineering 2022 (25.01.2022): 1–16. http://dx.doi.org/10.1155/2022/3277581.
Pełny tekst źródłaShijie, Xu, i Zhu Jianfeng. "A new strategy for lunar soft landing". Journal of the Astronautical Sciences 55, nr 3 (wrzesień 2007): 373–87. http://dx.doi.org/10.1007/bf03256530.
Pełny tekst źródłaKim, Yeong-Bae, Hyun-Jae Jeong, Shin-Mu Park, Jae Hyuk Lim i Hoon-Hee Lee. "Prediction and Validation of Landing Stability of a Lunar Lander by a Classification Map Based on Touchdown Landing Dynamics’ Simulation Considering Soft Ground". Aerospace 8, nr 12 (6.12.2021): 380. http://dx.doi.org/10.3390/aerospace8120380.
Pełny tekst źródłaWang, Dayi, Xiangyu Huang i Yifeng Guan. "GNC system scheme for lunar soft landing spacecraft". Advances in Space Research 42, nr 2 (lipiec 2008): 379–85. http://dx.doi.org/10.1016/j.asr.2007.08.031.
Pełny tekst źródłaBanerjee, Avijit, i Radhakant Padhi. "Multi-phase MPSP Guidance for Lunar Soft Landing". Transactions of the Indian National Academy of Engineering 5, nr 1 (marzec 2020): 61–74. http://dx.doi.org/10.1007/s41403-020-00090-1.
Pełny tekst źródłaPark, Bong-Gyun, Jong-Sun Ahn i Min-Jea Tahk. "Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site". International Journal of Aeronautical and Space Sciences 12, nr 3 (30.09.2011): 288–95. http://dx.doi.org/10.5139/ijass.2011.12.3.288.
Pełny tekst źródłaQu, Mo Feng. "Lunar Soft - Landing Trajectory of Mechanics Optimization Based on the Improved Ant Colony Algorithm". Applied Mechanics and Materials 721 (grudzień 2014): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.721.446.
Pełny tekst źródłaYin, Ke, Songlin Zhou, Qiao Sun i Feng Gao. "Lunar Surface Fault-Tolerant Soft-Landing Performance and Experiment for a Six-Legged Movable Repetitive Lander". Sensors 21, nr 17 (24.08.2021): 5680. http://dx.doi.org/10.3390/s21175680.
Pełny tekst źródłaYuan, Qi, Heng Chen, Hong Nie, Guang Zheng, Chen Wang i Likai Hao. "Soft-Landing Dynamic Analysis of a Manned Lunar Lander Em-Ploying Energy Absorption Materials of Carbon Nanotube Buckypaper". Materials 14, nr 20 (19.10.2021): 6202. http://dx.doi.org/10.3390/ma14206202.
Pełny tekst źródłaRozprawy doktorskie na temat "Lunar Soft-Landing"
Hawkins, Alisa Michelle. "Constrained trajectory optimization of a soft lunar landing from a parking orbit". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32431.
Pełny tekst źródłaIncludes bibliographical references (p. 141-144).
A trajectory optimization study for a soft landing on the Moon, which analyzed the effects of adding operationally based constraints on the behavior of the minimum fuel trajectory, has been completed. Metrics of trajectory evaluation included fuel expenditure, terminal attitude, thrust histories, etc.. The vehicle was initialized in a circular parking orbit and the trajectory divided into three distinct phases: de-orbit, descent, and braking. Analysis was initially performed with two-dimensional translational motion, and the minimally constrained optimal trajectory was found to be operationally infeasible. Operational constraints, such as a positive descent orbit perilune height and a vertical terminal velocity, were imposed to obtain a viable trajectory, but the final vehicle attitude and landing approach angle remained largely horizontal. This motivated inclusion of attitude kinematics and constraints to the system. With rotational motion included, the optimal solution was feasible, but the trajectory still had undesirable characteristics. Constraining the throttle to maximum during braking produced a steeper approach, but used the most fuel. The results suggested a terminal vertical descent was a desirable fourth segment of the trajectory. which was imposed by first flying to an offset point and then enforcing a vertical descent, and provided extra safely margin prior to landing. In this research, the relative effects of adding operational constraints were documented and can be used as a baseline study for further detailed trajectory optimization.
by Alisa Michelle Hawkins.
S.M.
Książki na temat "Lunar Soft-Landing"
Zhang, He, Deng-Yun Yu i Ze-Zhou Sun. Detector Technology of Lunar Soft Landing. Springer, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Lunar Soft-Landing"
Yu, Deng-Yun, Ze-Zhou Sun i He Zhang. "Environment Analysis of Lunar Soft Landing Exploration". W Technology of Lunar Soft Lander, 21–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6580-9_2.
Pełny tekst źródłaPragallapati, Naveen, i N. V. S. L. Narasimham. "A TEP-Based Approach for Optimal Thrust Direction of Lunar Soft Landing". W Advances in Intelligent Systems and Computing, 159–69. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3174-8_15.
Pełny tekst źródłaYu, Deng-Yun, Ze-Zhou Sun i He Zhang. "Landing Gear Technology of Lunar Lander". W Technology of Lunar Soft Lander, 367–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6580-9_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Lunar Soft-Landing"
Zhiyuan Li i Hongjue Li. "Lunar soft landing trajectory optimization methods". W International Conference on Cyberspace Technology (CCT 2014). Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1365.
Pełny tekst źródłaQiao, Yandi, Zexu Zhang, Feng Chen, Xingyan Wang i Jing Wang. "Three-Dimensional Trajectory Optimization for soft lunar landing considering landing constraints*". W 2020 IEEE 16th International Conference on Control & Automation (ICCA). IEEE, 2020. http://dx.doi.org/10.1109/icca51439.2020.9264583.
Pełny tekst źródłaJing-Yang, Zhou, Zhou Di i Duan Guang-ren. "Optimal Orbit Design of Lunar Modules Soft Landing". W 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280951.
Pełny tekst źródłaSongtao Chang, Yongji Wang i Xing Wei. "Optimal soft lunar landing based on differential evolution". W 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505664.
Pełny tekst źródłaZhou, Jingyang, Di Zhou, Kok Lay Teo i Guohui Zhao. "Nonlinear optimal feedback control for lunar module soft landing". W 2009 IEEE International Conference on Automation and Logistics (ICAL). IEEE, 2009. http://dx.doi.org/10.1109/ical.2009.5262838.
Pełny tekst źródłaHuang, Xiangyu, i Dayi Wang. "Autonomous navigation and guidance for pinpoint lunar soft landing". W 2007 IEEE International Conference on Robotics and biomimetics (ROBIO). IEEE, 2007. http://dx.doi.org/10.1109/robio.2007.4522326.
Pełny tekst źródłaP, Amrutha V., Sreeja S i Sabarinath A. "Trajectory Optimization of Lunar Soft Landing Using Differential Evolution". W 2021 IEEE Aerospace Conference. IEEE, 2021. http://dx.doi.org/10.1109/aero50100.2021.9438312.
Pełny tekst źródłaBanerjee, Avijit, i Radhakant Padhi. "Nonlinear Guidance and Autopilot Design for Lunar Soft Landing". W 2018 AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1872.
Pełny tekst źródłaXu Xibao, Guo Jifeng, Bai Chengchao i Zhang Luwen. "TV guidance technical schemes for manned lunar soft landing". W 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2016. http://dx.doi.org/10.1109/cgncc.2016.7829158.
Pełny tekst źródłaLin, Zhiyong. "The Control Strategy of Soft Landing Trajectory of Lunar Craft". W 2015 International conference on Applied Science and Engineering Innovation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/asei-15.2015.261.
Pełny tekst źródła