Gotowa bibliografia na temat „LSFD-U Meshless Solver Development”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „LSFD-U Meshless Solver Development”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "LSFD-U Meshless Solver Development"

1

Yousuf, Mohamed, i N. Balakrishnan. "Residual-Based Grid Adaptation for Meshless LSFD-U Solver". AIAA Journal 57, nr 4 (kwiecień 2019): 1649–58. http://dx.doi.org/10.2514/1.j057633.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Munikrishna, N., i N. Balakrishnan. "Turbulent flow computations on a hybrid cartesian point distribution using meshless solver LSFD-U". Computers & Fluids 40, nr 1 (styczeń 2011): 118–38. http://dx.doi.org/10.1016/j.compfluid.2010.08.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "LSFD-U Meshless Solver Development"

1

Munikrishna, N. "On Viscous Flux Discretization Procedures For Finite Volume And Meshless Solvers". Thesis, 2007. http://hdl.handle.net/2005/471.

Pełny tekst źródła
Streszczenie:
This work deals with discretizing viscous fluxes in the context of unstructured data based finite volume and meshless solvers, two competing methodologies for simulating viscous flows past complex industrial geometries. The two important requirements of a viscous discretization procedure are consistency and positivity. While consistency is a fundamental requirement, positivity is linked to the robustness of the solution methodology. The following advancements are made through this work within the finite volume and meshless frameworks. Finite Volume Method: Several viscous discretization procedures available in the literature are reviewed for: 1. ability to handle general grid elements 2. efficiency, particularly for 3D computations 3. consistency 4. positivity as applied to a model equation 5. global error behavior as applied to a model equation. While some of the popular procedures result in inconsistent formulation, the consistent procedures are observed to be computationally expensive and also have problems associated with robustness. From a systematic global error study, we have observed that even a formally inconsistent scheme exhibits consistency in terms of global error i.e., the global error decreases with grid refinement. This observation is important and also encouraging from the view point of devising a suitable discretization scheme for viscous fluxes. This study suggests that, one can relax the consistency requirement in order to gain in terms of robustness and computational cost, two key ingredients for any industrial flow solver. Some of the procedures are analysed for positivity as applied to a Laplacian and it is found that the two requirements of a viscous discretization procedure, consistency(accuracy) and positivity are essentially conflicting. Based on the review, four representative schemes are selected and used in HIFUN-2D(High resolution Flow Solver on UNstructured Meshes), an unstructured data based cell center finite volume flow solver, to simulate standard laminar and turbulent flow test cases. From the analysis, we can advocate the use of Green Gauss theorem based diamond path procedure which can render high level of robustness to the flow solver for industrial computations. Meshless Method: An Upwind-Least Squares Finite Difference(LSFD-U) meshless solver is developed for simulating viscous flows. Different viscous discretization procedures are proposed and analysed for positivity and the procedure which is found to be more positive is employed. Obtaining suitable point distribution, particularly for viscous flow computations happens to be one of the important components for the success of the meshless solvers. In principle, the meshless solvers can operate on any point distribution obtained using structured, unstructured and Cartesian meshes. But, the Cartesian meshing happens to be the most natural candidate for obtaining the point distribution. Therefore, the performance of LSFD-U for simulating viscous flows using point distribution obtained from Cartesian like grids is evaluated. While we have successfully computed laminar viscous flows, there are difficulties in terms of solving turbulent flows. In this context, we have evolved a strategy to generate suitable point distribution for simulating turbulent flows using meshless solver. The strategy involves a hybrid Cartesian point distribution wherein the region of boundary layer is filled with high aspect ratio body-fitted structured mesh and the potential flow region with unit aspect ratio Cartesian mesh. The main advantage of our solver is in terms of handling the structured and Cartesian grid interface. The interface algorithm is considerably simplified compared to the hybrid Cartesian mesh based finite volume methodology by exploiting the advantage accrue out of the use of meshless solver. Cheap, simple and robust discretization procedures are evolved for both inviscid and viscous fluxes, exploiting the basic features exhibited by the hybrid point distribution. These procedures are also subjected to positivity analysis and a systematic global error study. It should be remarked that the viscous discretization procedure employed in structured grid block is positive and in fact, this feature imparts the required robustness to the solver for computing turbulent flows. We have demonstrated the capability of the meshless solver LSFDU to solve turbulent flow past complex aerodynamic configurations by solving flow past a multi element airfoil configuration. In our view, the success shown by this work in computing turbulent flows can be considered as a landmark development in the area of meshless solvers and has great potential in industrial applications.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "LSFD-U Meshless Solver Development"

1

Munikrishna, N., i N. Balakrishnan. "Computing Turbulent Flows Using Meshless Solver LSFD-U". W Computational Fluid Dynamics 2008, 683–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_91.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Khillare, Amol, Mohamed Yousuf, N. Munikrishna i N. Balakrishnan. "Turbulent Flow Computations on a Hybrid Unstructured Point Distribution Using Meshless Solver LSFD-U". W Lecture Notes in Mechanical Engineering, 295–301. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5183-3_32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "LSFD-U Meshless Solver Development"

1

Narayanarao, Balakrishnan, i Yousuf Mohamed. "Residual based grid adaptation for meshless LSFD-U solver". W 23rd AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Khillare, Amol U., Mohamed Yousuf, N. Munikrishna i Balakrishnan Narayanarao. "Turbulent flow computations in three dimensions on a hybrid Cartesian point distribution using meshless solver LSFD - U". W 25th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-3057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii