Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Low temperature photoluminescence.

Artykuły w czasopismach na temat „Low temperature photoluminescence”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Low temperature photoluminescence”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lacroix, Y., C. A. Tran, S. P. Watkins i M. L. W. Thewalt. "Low‐temperature photoluminescence of epitaxial InAs". Journal of Applied Physics 80, nr 11 (grudzień 1996): 6416–24. http://dx.doi.org/10.1063/1.363660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kini, R. N., A. Mascarenhas, R. France i A. J. Ptak. "Low temperature photoluminescence from dilute bismides". Journal of Applied Physics 104, nr 11 (grudzień 2008): 113534. http://dx.doi.org/10.1063/1.3041479.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Misiewicz, J. "The low temperature photoluminescence in Zn3P2". Physica Status Solidi (a) 107, nr 1 (16.05.1988): K65—K68. http://dx.doi.org/10.1002/pssa.2211070161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kim, Soo-Yong. "A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum". Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 24, nr 4 (30.04.2010): 10–16. http://dx.doi.org/10.5207/jieie.2010.24.4.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kasai, Jun‐ichi, i Yoshifumi Katayama. "Low‐temperature micro‐photoluminescence using confocal microscopy". Review of Scientific Instruments 66, nr 7 (lipiec 1995): 3738–43. http://dx.doi.org/10.1063/1.1145431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pickin, William. "Low-temperature photoluminescence spectrum of amorphous semiconductors". Physical Review B 40, nr 17 (15.12.1989): 12030–33. http://dx.doi.org/10.1103/physrevb.40.12030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kovalev, D., J. Diener, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al L. Efros i M. Rosen. "Low-temperature photoluminescence upconversion in porous Si". Physical Review B 61, nr 23 (15.06.2000): 15841–47. http://dx.doi.org/10.1103/physrevb.61.15841.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Churmanov, V. N., N. B. Gruzdev, V. I. Sokolov, V. A. Pustovarov, V. Yu Ivanov i N. A. Mironova-Ulmane. "Low-temperature photoluminescence in NixMg1−xO nanocrystals". Low Temperature Physics 41, nr 3 (marzec 2015): 233–35. http://dx.doi.org/10.1063/1.4915911.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Feng, W., F. Chen, Q. Huang i J. M. Zhou. "Photoluminescence of low-temperature multiple quantum wells". Journal of Crystal Growth 175-176 (maj 1997): 1173–77. http://dx.doi.org/10.1016/s0022-0248(96)01041-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lan, Y. C., X. L. Chen, Y. G. Cao, Y. P. Xu, L. D. Xun, T. Xu i J. K. Liang. "Low-temperature synthesis and photoluminescence of AlN". Journal of Crystal Growth 207, nr 3 (grudzień 1999): 247–50. http://dx.doi.org/10.1016/s0022-0248(99)00448-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bezrodna, T., V. Melnyk, V. Vorobjev i G. Puchkovska. "Low-temperature photoluminescence of 5CB liquid crystal". Journal of Luminescence 130, nr 7 (lipiec 2010): 1134–41. http://dx.doi.org/10.1016/j.jlumin.2010.02.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

GASANLY, N. M. "Low-temperature photoluminescence in CuIn5S8 single crystals". Pramana 86, nr 6 (13.02.2016): 1383–90. http://dx.doi.org/10.1007/s12043-015-1181-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Pal, S., A. Sarkar, P. Kumar, D. Kanjilal, T. Rakshit, S. K. Ray i D. Jana. "Low temperature photoluminescence from disordered granular ZnO". Journal of Luminescence 169 (styczeń 2016): 326–33. http://dx.doi.org/10.1016/j.jlumin.2015.09.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Cho, Hak Dong, Im Taek Yoon, Kwun Bum Chung, Deuk Young Kim, Tae Won Kang i Sh U. Yuldashev. "Low-temperature photoluminescence of WO 3 nanoparticles". Journal of Luminescence 195 (marzec 2018): 344–47. http://dx.doi.org/10.1016/j.jlumin.2017.11.053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Bodnar’, I. V., i M. V. Yakushev. "Low-temperature photoluminescence in AgGaSe2 single crystals". Technical Physics 49, nr 3 (marzec 2004): 335–37. http://dx.doi.org/10.1134/1.1688420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Posavec, T., S. Nepal i S. V. Dordevic. "Low Temperature Photoluminescence in Some Common Polymers". Materials Performance and Characterization 7, nr 1 (2.05.2018): 20170138. http://dx.doi.org/10.1520/mpc20170138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Andreev, B. A., N. A. Sobolev, Yu A. Nikolaev, D. I. Kuritsin, M. I. Makovijchuk i E. O. Parshin. "Low-temperature photoluminescence in holmium-doped silicon". Semiconductors 33, nr 4 (kwiecień 1999): 407–9. http://dx.doi.org/10.1134/1.1187703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Tronc, P., B. Reid, H. Mani, R. MacIejko, A. N. Titkov, J. L. Lazzari i C. Alibert. "Low Temperature Photoluminescence Spectra of Ga0.77In0.23As0.19SB0.81 Compounds". physica status solidi (b) 180, nr 2 (1.12.1993): K87—K91. http://dx.doi.org/10.1002/pssb.2221800240.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Liu, Yichun, i Yanhong Tong. "Growth and Optical Properties of ZnO Low-Dimensional Nanostructures". Journal of Nanoscience and Nanotechnology 8, nr 3 (1.03.2008): 1101–9. http://dx.doi.org/10.1166/jnn.2008.18158.

Pełny tekst źródła
Streszczenie:
Recent studies on the growth of ZnO nanostructures and their optical properties were reviewed. Using different methods, a variety of ZnO nanostructures, including quantum dots nanotowers, nanotubes, nanorods, nanowires, and nanosheets, displaying zero, one, and two dimensions, have been synthesized. The growth of ZnO low-dimensional nanostructures has been demonstrated. Their optical properties have been studied by means of room-temperature photoluminescence spectra, low-temperature photoluminescence spectra, temperature-dependent photoluminescence spectra, and pressure-dependent photoluminescence spectra. The optical properties can be adjusted by the surface features of ZnO low-dimensional nanostructures. The strong exciton emission has been observed in some nanostructures, showing promising potential in nanodevice applications.
Style APA, Harvard, Vancouver, ISO itp.
20

Sagara, Yoshimitsu, Tatsuya Muramatsu i Nobuyuki Tamaoki. "A 1,6-Diphenylpyrene-Based, Photoluminescent Cyclophane Showing a Nematic Liquid-Crystalline Phase at Room Temperature". Crystals 9, nr 2 (11.02.2019): 92. http://dx.doi.org/10.3390/cryst9020092.

Pełny tekst źródła
Streszczenie:
Photoluminescent nematic liquid crystals have been an attractive research target for decades, because of their potential applications in optoelectrical devices. Integration of luminescent motifs into cyclic structures is a promising approach to induce low-ordered liquid-crystalline phases, even though relatively large and rigid luminophores are used as emitters. Here, we demonstrate a 1,6-diphenylpyrene-based, unsymmetric cyclophane showing a stable nematic phase at room temperature and exhibiting strong photoluminescence from the condensed state. The observed sky-blue photoluminescence was dominated by the emission species ascribed to assembled luminophores rather than monomers.
Style APA, Harvard, Vancouver, ISO itp.
21

Kitada, Nobuo, i Takayuki Ishida. "Polymeric one- and two-dimensional copper(i) iodide complexes showing photoluminescence tunable by azaaromatic ligands". CrystEngComm 16, nr 34 (2014): 8035–40. http://dx.doi.org/10.1039/c4ce01231c.

Pełny tekst źródła
Streszczenie:
Photoluminescent properties of four low-dimensional [(CuI)xL]n complexes were investigated in the solid state at ambient temperature. A photoluminescence quantum yield of 73% was recorded for [(CuI)2(46dmpm)]n.
Style APA, Harvard, Vancouver, ISO itp.
22

Tian, Peng, Chong Qing Huang, Wen Hua Luo i Jing Liu. "MOCVD Growth and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots". Advanced Materials Research 571 (wrzesień 2012): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.571.265.

Pełny tekst źródła
Streszczenie:
InAs/GaAs quantum dots structures are grown by meta-organic chemical vapor deposition. The effects of growth temperatures on the structural and optical properties of quantum dots are investigated by the atomic force microscopy and photoluminescence. An areal density of 9.3×109cm2 and a strongly enhanced photoluminescence intensity are obtained at the temperature of 505°C, furthermore, the low and high growth temperature tend to form coalescent islands and decrease the intensity of photoluminescence spectra.
Style APA, Harvard, Vancouver, ISO itp.
23

Hwang, Seongmi, Youngmin Choi i Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots". Journal of Nanoscience and Nanotechnology 7, nr 11 (1.11.2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.026.

Pełny tekst źródła
Streszczenie:
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 °C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.
Style APA, Harvard, Vancouver, ISO itp.
24

Hwang, Seongmi, Youngmin Choi i Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots". Journal of Nanoscience and Nanotechnology 7, nr 11 (1.11.2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.18071.

Pełny tekst źródła
Streszczenie:
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 °C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.
Style APA, Harvard, Vancouver, ISO itp.
25

Hatayama, Tomoaki, Anne Henry, Hiroshi Yano i Takashi Fuyuki. "Low-temperature photoluminescence of 8H-SiC homoepitaxial layer". Japanese Journal of Applied Physics 55, nr 2 (20.01.2016): 020303. http://dx.doi.org/10.7567/jjap.55.020303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Park, Jin Won, Dong Jae Lee, Dong Hwan Kim i Yunsang Lee. "Low-temperature Photoluminescence for Polycrystalline SrZrO3 and SrHfO3". Journal of the Korean Physical Society 58, nr 2 (15.02.2011): 316–20. http://dx.doi.org/10.3938/jkps.58.316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

James, R. B., X. J. Bao, T. E. Schlesinger, J. M. Markakis, A. Y. Cheng i C. Ortale. "Low‐temperature photoluminescence studies of mercuric‐iodide photodetectors". Journal of Applied Physics 66, nr 6 (15.09.1989): 2578–84. http://dx.doi.org/10.1063/1.344222.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Lee, Jaesun, i N. C. Giles. "Low‐temperature photoluminescence from bulk CdTe and Cd0.967Zn0.033Te". Journal of Applied Physics 78, nr 2 (15.07.1995): 1191–95. http://dx.doi.org/10.1063/1.360356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Abay, B., H. Efeoglu, Y. K. Yogurtçu i M. Alieva. "Low-temperature visible photoluminescence spectra of Tl2GaInSe4layered crystals". Semiconductor Science and Technology 16, nr 9 (10.08.2001): 745–49. http://dx.doi.org/10.1088/0268-1242/16/9/302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Huang, Jia-Yao, Lin Shang, Shu-Fang Ma, Bin Han, Guo-Dong Wei, Qing-Ming Liu, Xiao-Dong Hao, Heng-Sheng Shan i Bing-She Xu. "Low temperature photoluminescence study of GaAs defect states". Chinese Physics B 29, nr 1 (styczeń 2020): 010703. http://dx.doi.org/10.1088/1674-1056/ab5fb8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

ZHU, DELIANG, QIANWANG CHEN i YUHENG ZHANG. "STABLE PHOTOLUMINESCENCE IN LOW-TEMPERATURE ANNEALED POROUS SILICON". Modern Physics Letters B 15, nr 24 (20.10.2001): 1077–85. http://dx.doi.org/10.1142/s0217984901002920.

Pełny tekst źródła
Streszczenie:
The low-temperature annealing of porous silicon (PS) has been studied in ambient air and vacuum. After air-annealed samples were again stored in air for a period of time, their luminescence exhibited improved stability in comparison to fresh samples. But their luminescence intensity is much weaker than that of fresh samples, and their peak position moves to shorter wavelengths. A stoichiometric oxide SiO2 can easily be formed on PS surfaces if the annealing is performed in vacuum. The SiO2 layer prevents nc-Si from further oxidation and guarantees the luminescence intensity and that peak position remains unchanged with air storage.
Style APA, Harvard, Vancouver, ISO itp.
32

Gasanly, N. M., i A. Aydinli. "Low-temperature photoluminescence spectra of InS single crystals". Solid State Communications 101, nr 11 (marzec 1997): 797–99. http://dx.doi.org/10.1016/s0038-1098(96)00704-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kim, Seong‐Il, Moo‐Sung Kim, Yong Kim, Kyung Sook Eom, Suk‐Ki Min i Choochon Lee. "Low temperature photoluminescence characteristics of carbon doped GaAs". Journal of Applied Physics 73, nr 9 (maj 1993): 4703–5. http://dx.doi.org/10.1063/1.352740.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Aydınlı, A., N. M. Gasanly i K. Gökşen. "Low-temperature photoluminescence study of GaS0.5Se0.5 layered crystals". Materials Research Bulletin 36, nr 10 (lipiec 2001): 1823–32. http://dx.doi.org/10.1016/s0025-5408(01)00635-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Shinde, Aparna, Richa Gahlaut i Shailaja Mahamuni. "Low-Temperature Photoluminescence Studies of CsPbBr3 Quantum Dots". Journal of Physical Chemistry C 121, nr 27 (29.06.2017): 14872–78. http://dx.doi.org/10.1021/acs.jpcc.7b02982.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Hudait, M. K., P. Modak, K. S. R. K. Rao i S. B. Krupanidhi. "Low temperature photoluminescence properties of Zn-doped GaAs". Materials Science and Engineering: B 57, nr 1 (grudzień 1998): 62–70. http://dx.doi.org/10.1016/s0921-5107(98)00259-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Gasanly, N. M., A. Aydinli, A. Bek i I. Yilmaz. "Low-temperature photoluminescence spectra of layered semiconductor TlGaS2". Solid State Communications 105, nr 1 (styczeń 1998): 21–24. http://dx.doi.org/10.1016/s0038-1098(97)10027-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Nikitin, T., S. Kopyl, V. Ya Shur, Y. V. Kopelevich i A. L. Kholkin. "Low-temperature photoluminescence in self-assembled diphenylalanine microtubes". Physics Letters A 380, nr 18-19 (kwiecień 2016): 1658–62. http://dx.doi.org/10.1016/j.physleta.2016.02.043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kalem, S., T. Curtis, W. B. de Boer i G. E. Stillman. "Low-temperature photoluminescence in SiGe single quantum wells". Applied Physics A: Materials Science & Processing 66, nr 1 (1.01.1998): 23–28. http://dx.doi.org/10.1007/s003390050632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gasanly, N. M. "Low-temperature photoluminescence in layered structured TlGa0.5In0.5Se2 crystals". Journal of Alloys and Compounds 547 (styczeń 2013): 33–36. http://dx.doi.org/10.1016/j.jallcom.2012.08.134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Tu, Ya Fang, i Qiu Ming Fu. "Low Temperature Synthesis and Characterization of Flower-Like ZnO Nanostructures". Advanced Materials Research 664 (luty 2013): 605–8. http://dx.doi.org/10.4028/www.scientific.net/amr.664.605.

Pełny tekst źródła
Streszczenie:
Flower-like ZnO nanostructures have been synthesized via solution process using zinc nitrate and sodium hydroxide at very low temperature of 70 °C in 1h. The structure, morphology and optical properties of the product were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. The flower-like ZnO nanostructures were composed of uniform nanorods, they were well crystallized with a hexagonal wurtzite structure, and showed a strong ultraviolet emission at 385 nm and a weak and broad yellow emission in the photoluminescence spectrum.
Style APA, Harvard, Vancouver, ISO itp.
42

Byrne, Daragh, Aidan Cowley, Nick Bennett i Enda McGlynn. "The luminescent properties of CuAlO2". J. Mater. Chem. C 2, nr 37 (2014): 7859–68. http://dx.doi.org/10.1039/c4tc01311e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Morales, A. Escobedo, R. Aceves, U. Pal i J. Z. Zhang. "Low Temperature Photoluminescence Characteristics of Chemically Synthesized Indium Doped Zinc Oxide Nanostructures". Journal of Nanoscience and Nanotechnology 8, nr 12 (1.12.2008): 6538–44. http://dx.doi.org/10.1166/jnn.2008.18422.

Pełny tekst źródła
Streszczenie:
Photoluminescence (PL) emission and excitation (EPL) spectra of un-doped and indium (1%) doped 1D zinc oxide nanostructures are studied at different temperatures. The nanostructures reveal a blue emission band attributed to localized donor states. Indium doping enhances the blue emission. While at low temperatures (<50 K) PL spectra are dominated by the emission attributed to the recombination of excitons bound to neutral donors (D0,X), at higher temperatures (>100 K), defect related emissions in the visible range dominate over the excitonic emission. Temperature dependence measurements on the doped sample reveal that (D0,X) emission energies obey the Varshni's formula with fitting constants α = 8.4±0.3 × 10−4 eV/K and β = 650±40 K. The (D0,X) emission intensity decays exponentially with temperature.
Style APA, Harvard, Vancouver, ISO itp.
44

Xia, Yijie, Shuaishuai Du, Pengju Huang, Luchao Wu, Siyu Yan, Weizhi Wang i Gaoyu Zhong. "Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites". Nanomaterials 11, nr 12 (6.12.2021): 3310. http://dx.doi.org/10.3390/nano11123310.

Pełny tekst źródła
Streszczenie:
The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78–500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78–500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material’s high photoluminescence efficiency and low electroluminescence efficiency.
Style APA, Harvard, Vancouver, ISO itp.
45

Dissanayake, A., J. Y. Lin, H. X. Jiang, Z. J. Yu i J. H. Edgar. "Low‐temperature epitaxial growth and photoluminescence characterization of GaN". Applied Physics Letters 65, nr 18 (31.10.1994): 2317–19. http://dx.doi.org/10.1063/1.112729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Sokolov, V. I., V. A. Pustovarov, N. B. Gruzdev, P. S. Sokolov i A. N. Baranov. "Low-temperature photoluminescence of CoO excited by synchrotron radiation". Optics and Spectroscopy 116, nr 5 (maj 2014): 790–92. http://dx.doi.org/10.1134/s0030400x14050233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhai, Y. J., X. L. Chen, J. H. Li, X. Y. Chu i Y. Zhang. "Low-Temperature Photoluminescence Properties of the Monolayer MoS2 Nanomaterals". Integrated Ferroelectrics 212, nr 1 (11.11.2020): 147–55. http://dx.doi.org/10.1080/10584587.2020.1819043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Valakh, M. Ya, N. V. Vuychik, V. V. Strelchuk, S. V. Sorokin, T. V. Shubina, S. V. Ivanov i P. S. Kop’ev. "Low-temperature anti-Stokes photoluminescence in CdSe/ZnSe nanostructures". Semiconductors 37, nr 6 (czerwiec 2003): 699–704. http://dx.doi.org/10.1134/1.1582538.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Zhang, Zengxing, Jianxiong Wang, Huajun Yuan, Yan Gao, Dongfang Liu, Li Song, Yanjuan Xiang i in. "Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons". Journal of Physical Chemistry B 109, nr 39 (październik 2005): 18352–55. http://dx.doi.org/10.1021/jp052199d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

De Vittorio, M., A. Melcarne, R. Rinaldi i R. Cingolani. "Low temperature tool for photoluminescence mapping with submicron resolution". Review of Scientific Instruments 72, nr 6 (czerwiec 2001): 2610–12. http://dx.doi.org/10.1063/1.1369631.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii