Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Low-Rank Tensor.

Rozprawy doktorskie na temat „Low-Rank Tensor”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 27 najlepszych rozpraw doktorskich naukowych na temat „Low-Rank Tensor”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Stojanac, Željka [Verfasser]. "Low-rank Tensor Recovery / Željka Stojanac". Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1119888565/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shi, Qiquan. "Low rank tensor decomposition for feature extraction and tensor recovery". HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/549.

Pełny tekst źródła
Streszczenie:
Feature extraction and tensor recovery problems are important yet challenging, particularly for multi-dimensional data with missing values and/or noise. Low-rank tensor decomposition approaches are widely used for solving these problems. This thesis focuses on three common tensor decompositions (CP, Tucker and t-SVD) and develops a set of decomposition-based approaches. The proposed methods aim to extract low-dimensional features from complete/incomplete data and recover tensors given partial and/or grossly corrupted observations.;Based on CP decomposition, semi-orthogonal multilinear principal component analysis (SO-MPCA) seeks a tensor-to-vector projection that maximizes the captured variance with the orthogonality constraint imposed in only one mode, and it further integrates the relaxed start strategy (SO-MPCA-RS) to achieve better feature extraction performance. To directly obtain the features from incomplete data, low-rank CP and Tucker decomposition with feature variance maximization (TDVM-CP and TDVM-Tucker) are proposed. TDVM methods explore the relationship among tensor samples via feature variance maximization, while estimating the missing entries via low-rank CP and Tucker approximation, leading to informative features extracted directly from partial observations. TDVM-CP extracts low-dimensional vector features viewing the weight vectors as features and TDVM-Tucker learns low-dimensional tensor features viewing the core tensors as features. TDVM methods can be generalized to other variants based on other tensor decompositions. On the other hand, this thesis solves the missing data problem by introducing low-rank matrix/tensor completion methods, and also contributes to automatic rank estimation. Rank-one matrix decomposition coupled with L1-norm regularization (L1MC) addresses the matrix rank estimation problem. With the correct estimated rank, L1MC refines its model without L1-norm regularization (L1MC-RF) and achieve optimal recovery results given enough observations. In addition, CP-based nuclear norm regularized orthogonal CP decomposition (TREL1) solves the challenging CP- and Tucker-rank estimation problems. The estimated rank can improve the tensor completion accuracy of existing decomposition-based methods. Furthermore, tensor singular value decomposition (t-SVD) combined with tensor nuclear norm (TNN) regularization (ARE_TNN) provides automatic tubal-rank estimation. With the accurate tubal-rank determination, ARE_TNN relaxes its model without the TNN constraint (TC-ARE) and results in optimal tensor completion under mild conditions. In addition, ARE_TNN refines its model by explicitly utilizing its determined tubal-rank a priori and then successfully recovers low-rank tensors based on incomplete and/or grossly corrupted observations (RTC-ARE: robust tensor completion/RTPCA-ARE: robust tensor principal component analysis).;Experiments and evaluations are presented and analyzed using synthetic data and real-world images/videos in machine learning, computer vision, and data mining applications. For feature extraction, the experimental results of face and gait recognition show that SO-MPCA-RS achieves the best overall performance compared with competing algorithms, and its relaxed start strategy is also effective for other CP-based PCA methods. In the applications of face recognition, object/action classification, and face/gait clustering, TDVM methods not only stably yield similar good results under various multi-block missing settings and different parameters in general, but also outperform the competing methods with significant improvements. For matrix/tensor rank estimation and recovery, L1MC-RF efficiently estimates the true rank and exactly recovers the incomplete images/videos under mild conditions, and outperforms the state-of-the-art algorithms on the whole. Furthermore, the empirical evaluations show that TREL1 correctly determines the CP-/Tucker- ranks well, given sufficient observed entries, which consistently improves the recovery performance of existing decomposition-based tensor completion. The t-SVD recovery methods TC-ARE, RTPCA-ARE, and RTC-ARE not only inherit the ability of ARE_TNN to achieve accurate rank estimation, but also achieve good performance in the tasks of (robust) image/video completion, video denoising, and background modeling. This outperforms the state-of-the-art methods in all cases we have tried so far with significant improvements.
Style APA, Harvard, Vancouver, ISO itp.
3

Han, Xu. "Robust low-rank tensor approximations using group sparsity". Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S001/document.

Pełny tekst źródła
Streszczenie:
Le développement de méthodes de décomposition de tableaux multi-dimensionnels suscite toujours autant d'attention, notamment d'un point de vue applicatif. La plupart des algorithmes, de décompositions tensorielles, existants requièrent une estimation du rang du tenseur et sont sensibles à une surestimation de ce dernier. Toutefois, une telle estimation peut être difficile par exemple pour des rapports signal à bruit faibles. D'un autre côté, estimer simultanément le rang et les matrices de facteurs du tenseur ou du tenseur cœur n'est pas tâche facile tant les problèmes de minimisation de rang sont généralement NP-difficiles. Plusieurs travaux existants proposent d'utiliser la norme nucléaire afin de servir d'enveloppe convexe de la fonction de rang. Cependant, la minimisation de la norme nucléaire engendre généralement un coût de calcul prohibitif pour l'analyse de données de grande taille. Dans cette thèse, nous nous sommes donc intéressés à l'approximation d'un tenseur bruité par un tenseur de rang faible. Plus précisément, nous avons étudié trois modèles de décomposition tensorielle, le modèle CPD (Canonical Polyadic Decomposition), le modèle BTD (Block Term Decomposition) et le modèle MTD (Multilinear Tensor Decomposition). Pour chacun de ces modèles, nous avons proposé une nouvelle méthode d'estimation de rang utilisant une métrique moins coûteuse exploitant la parcimonie de groupe. Ces méthodes de décomposition comportent toutes deux étapes : une étape d'estimation de rang, et une étape d'estimation des matrices de facteurs exploitant le rang estimé. Des simulations sur données simulées et sur données réelles montrent que nos méthodes présentent toutes une plus grande robustesse à la présence de bruit que les approches classiques
Last decades, tensor decompositions have gained in popularity in several application domains. Most of the existing tensor decomposition methods require an estimating of the tensor rank in a preprocessing step to guarantee an outstanding decomposition results. Unfortunately, learning the exact rank of the tensor can be difficult in some particular cases, such as for low signal to noise ratio values. The objective of this thesis is to compute the best low-rank tensor approximation by a joint estimation of the rank and the loading matrices from the noisy tensor. Based on the low-rank property and an over estimation of the loading matrices or the core tensor, this joint estimation problem is solved by promoting group sparsity of over-estimated loading matrices and/or the core tensor. More particularly, three new methods are proposed to achieve efficient low rank estimation for three different tensors decomposition models, namely Canonical Polyadic Decomposition (CPD), Block Term Decomposition (BTD) and Multilinear Tensor Decomposition (MTD). All the proposed methods consist of two steps: the first step is designed to estimate the rank, and the second step uses the estimated rank to compute accurately the loading matrices. Numerical simulations with noisy tensor and results on real data the show effectiveness of the proposed methods compared to the state-of-the-art methods
Style APA, Harvard, Vancouver, ISO itp.
4

Benedikt, Udo. "Low-Rank Tensor Approximation in post Hartree-Fock Methods". Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-133194.

Pełny tekst źródła
Streszczenie:
In this thesis the application of novel tensor decomposition and tensor representation techniques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calculations with increasing system size and therefore break the "curse of dimensionality". After a comparison of various tensor formats the application of the "canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduction) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with increasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown
Die vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt
Style APA, Harvard, Vancouver, ISO itp.
5

Rabusseau, Guillaume. "A tensor perspective on weighted automata, low-rank regression and algebraic mixtures". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4062.

Pełny tekst źródła
Streszczenie:
Ce manuscrit regroupe différents travaux explorant les interactions entre les tenseurs et l'apprentissage automatique. Le premier chapitre est consacré à l'extension des modèles de séries reconnaissables de chaînes et d'arbres aux graphes. Nous y montrons que les modèles d'automates pondérés de chaînes et d'arbres peuvent être interprétés d'une manière simple et unifiée à l'aide de réseaux de tenseurs, et que cette interprétation s'étend naturellement aux graphes ; nous étudions certaines propriétés de ce modèle et présentons des résultats préliminaires sur leur apprentissage. Le second chapitre porte sur la minimisation approximée d'automates pondérés d'arbres et propose une approche théoriquement fondée à la problématique suivante : étant donné un automate pondéré d'arbres à n états, comment trouver un automate à m
This thesis tackles several problems exploring connections between tensors and machine learning. In the first chapter, we propose an extension of the classical notion of recognizable function on strings and trees to graphs. We first show that the computations of weighted automata on strings and trees can be interpreted in a natural and unifying way using tensor networks, which naturally leads us to define a computational model on graphs: graph weighted models; we then study fundamental properties of this model and present preliminary learning results. The second chapter tackles a model reduction problem for weighted tree automata. We propose a principled approach to the following problem: given a weighted tree automaton with n states, how can we find an automaton with m
Style APA, Harvard, Vancouver, ISO itp.
6

Alora, John Irvin P. "Automated synthesis of low-rank stochastic dynamical systems using the tensor-train decomposition". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105006.

Pełny tekst źródła
Streszczenie:
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 79-83).
Cyber-physical systems are increasingly becoming integrated in various fields such as medicine, finance, robotics, and energy. In these systems and their applications, safety and correctness of operation is of primary concern, sparking a large amount of interest in the development of ways to verify system behavior. The tight coupling of physical constraints and computation that typically characterize cyber-physical systems make them extremely complex, resulting in unexpected failure modes. Furthermore, disturbances in the environment and uncertainties in the physical model require these systems to be robust. These are difficult constraints, requiring cyberphysical systems to be able to reason about their behavior and respond to events in real-time. Thus, the goal of automated synthesis is to construct a controller that provably implements a range of behaviors given by a specification of how the system should operate. Unfortunately, many approaches to automated synthesis are ad hoc and are limited to simple systems that admit specific structure (e.g. linear, affine systems). Not only that, but they are also designed without taking into account uncertainty. In order to tackle more general problems, several computational frameworks that allow for more general dynamics and uncertainty to be investigated. Furthermore, all of the existing computational algorithms suffer from the curse of dimensionality, the run time scales exponentially with increasing dimensionality of the state space. As a result, existing algorithms apply to systems with only a few degrees of freedom. In this thesis, we consider a stochastic optimal control problem with a special class of linear temporal logic specifications and propose a novel algorithm based on the tensor-train decomposition. We prove that the run time of the proposed algorithm scales linearly with the dimensionality of the state space and polynomially with the rank of the optimal cost-to-go function.
by John Irvin P. Alora.
S.M.
Style APA, Harvard, Vancouver, ISO itp.
7

Ceruti, Gianluca [Verfasser]. "Unconventional contributions to dynamical low-rank approximation of tree tensor networks / Gianluca Ceruti". Tübingen : Universitätsbibliothek Tübingen, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1186805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gorodetsky, Alex Arkady. "Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108918.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 205-214).
Optimal decision making under uncertainty is critical for control and optimization of complex systems. However, many techniques for solving problems such as stochastic optimal control and data assimilation encounter the curse of dimensionality when too many state variables are involved. In this thesis, we propose a framework for computing with high-dimensional functions that mitigates this exponential growth in complexity for problems with separable structure. Our framework tightly integrates two emerging areas: tensor decompositions and continuous computation. Tensor decompositions are able to effectively compress and operate with low-rank multidimensional arrays. Continuous computation is a paradigm for computing with functions instead of arrays, and it is best realized by Chebfun, a MATLAB package for computing with functions of up to three dimensions. Continuous computation provides a natural framework for building numerical algorithms that effectively, naturally, and automatically adapt to problem structure. The first part of this thesis describes a compressed continuous computation framework centered around a continuous analogue to the (discrete) tensor-train decomposition called the function-train decomposition. Computation with the function-train requires continuous matrix factorizations and continuous numerical linear algebra. Continuous analogues are presented for performing cross approximation; rounding; multilinear algebra operations such as addition, multiplication, integration, and differentiation; and continuous, rank-revealing, alternating least squares. Advantages of the function-train over the tensor-train include the ability to adaptively approximate functions and the ability to compute with functions that are parameterized differently. For example, while elementwise multiplication between tensors of different sizes is undefined, functions in FT format can be readily multiplied together. Next, we develop compressed versions of value iteration, policy iteration, and multilevel algorithms for solving dynamic programming problems arising in stochastic optimal control. These techniques enable computing global solutions to a broader set of problems, for example those with non-affine control inputs, than previously possible. Examples are presented for motion planning with robotic systems that have up to seven states. Finally, we use the FT to extend integration-based Gaussian filtering to larger state spaces than previously considered. Examples are presented for dynamical systems with up to twenty states.
by Alex Arkady Gorodetsky.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
9

Benedikt, Udo [Verfasser], Alexander A. [Akademischer Betreuer] Auer i Sibylle [Gutachter] Gemming. "Low-Rank Tensor Approximation in post Hartree-Fock Methods / Udo Benedikt ; Gutachter: Sibylle Gemming ; Betreuer: Alexander A. Auer". Chemnitz : Universitätsbibliothek Chemnitz, 2014. http://d-nb.info/1230577440/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cordolino, Sobral Andrews. "Robust low-rank and sparse decomposition for moving object detection : from matrices to tensors". Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS007/document.

Pełny tekst źródła
Streszczenie:
Dans ce manuscrit de thèse, nous introduisons les avancées récentes sur la décomposition en matrices (et tenseurs) de rang faible et parcimonieuse ainsi que les contributions pour faire face aux principaux problèmes dans ce domaine. Nous présentons d’abord un aperçu des méthodes matricielles et tensorielles les plus récentes ainsi que ses applications sur la modélisation d’arrière-plan et la segmentation du premier plan. Ensuite, nous abordons le problème de l’initialisation du modèle de fond comme un processus de reconstruction à partir de données manquantes ou corrompues. Une nouvelle méthodologie est présentée montrant un potentiel intéressant pour l’initialisation de la modélisation du fond dans le cadre de VSI. Par la suite, nous proposons une version « double contrainte » de l’ACP robuste pour améliorer la détection de premier plan en milieu marin dans des applications de vidéo-surveillance automatisées. Nous avons aussi développé deux algorithmes incrémentaux basés sur tenseurs afin d’effectuer une séparation entre le fond et le premier plan à partir de données multidimensionnelles. Ces deux travaux abordent le problème de la décomposition de rang faible et parcimonieuse sur des tenseurs. A la fin, nous présentons un travail particulier réalisé en conjonction avec le Centre de Vision Informatique (CVC) de l’Université Autonome de Barcelone (UAB)
This thesis introduces the recent advances on decomposition into low-rank plus sparse matrices and tensors, as well as the main contributions to face the principal issues in moving object detection. First, we present an overview of the state-of-the-art methods for low-rank and sparse decomposition, as well as their application to background modeling and foreground segmentation tasks. Next, we address the problem of background model initialization as a reconstruction process from missing/corrupted data. A novel methodology is presented showing an attractive potential for background modeling initialization in video surveillance. Subsequently, we propose a double-constrained version of robust principal component analysis to improve the foreground detection in maritime environments for automated video-surveillance applications. The algorithm makes use of double constraints extracted from spatial saliency maps to enhance object foreground detection in dynamic scenes. We also developed two incremental tensor-based algorithms in order to perform background/foreground separation from multidimensional streaming data. These works address the problem of low-rank and sparse decomposition on tensors. Finally, we present a particular work realized in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB)
Style APA, Harvard, Vancouver, ISO itp.
11

Kim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.

Pełny tekst źródła
Streszczenie:
Nonnegative matrix factorization (NMF) is a useful dimension reduction method that has been investigated and applied in various areas. NMF is considered for high-dimensional data in which each element has a nonnegative value, and it provides a low-rank approximation formed by factors whose elements are also nonnegative. The nonnegativity constraints imposed on the low-rank factors not only enable natural interpretation but also reveal the hidden structure of data. Extending the benefits of NMF to multidimensional arrays, nonnegative tensor factorization (NTF) has been shown to be successful in analyzing complicated data sets. Despite the success, NMF and NTF have been actively developed only in the recent decade, and algorithmic strategies for computing NMF and NTF have not been fully studied. In this thesis, computational challenges regarding NMF, NTF, and related least squares problems are addressed. First, efficient algorithms of NMF and NTF are investigated based on a connection from the NMF and the NTF problems to the nonnegativity-constrained least squares (NLS) problems. A key strategy is to observe typical structure of the NLS problems arising in the NMF and the NTF computation and design a fast algorithm utilizing the structure. We propose an accelerated block principal pivoting method to solve the NLS problems, thereby significantly speeding up the NMF and NTF computation. Implementation results with synthetic and real-world data sets validate the efficiency of the proposed method. In addition, a theoretical result on the classical active-set method for rank-deficient NLS problems is presented. Although the block principal pivoting method appears generally more efficient than the active-set method for the NLS problems, it is not applicable for rank-deficient cases. We show that the active-set method with a proper starting vector can actually solve the rank-deficient NLS problems without ever running into rank-deficient least squares problems during iterations. Going beyond the NLS problems, it is presented that a block principal pivoting strategy can also be applied to the l1-regularized linear regression. The l1-regularized linear regression, also known as the Lasso, has been very popular due to its ability to promote sparse solutions. Solving this problem is difficult because the l1-regularization term is not differentiable. A block principal pivoting method and its variant, which overcome a limitation of previous active-set methods, are proposed for this problem with successful experimental results. Finally, a group-sparsity regularization method for NMF is presented. A recent challenge in data analysis for science and engineering is that data are often represented in a structured way. In particular, many data mining tasks have to deal with group-structured prior information, where features or data items are organized into groups. Motivated by an observation that features or data items that belong to a group are expected to share the same sparsity pattern in their latent factor representations, We propose mixed-norm regularization to promote group-level sparsity. Efficient convex optimization methods for dealing with the regularization terms are presented along with computational comparisons between them. Application examples of the proposed method in factor recovery, semi-supervised clustering, and multilingual text analysis are presented.
Style APA, Harvard, Vancouver, ISO itp.
12

Kang, Kingston. "ESTIMATING THE RESPIRATORY LUNG MOTION MODEL USING TENSOR DECOMPOSITION ON DISPLACEMENT VECTOR FIELD". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5254.

Pełny tekst źródła
Streszczenie:
Modern big data often emerge as tensors. Standard statistical methods are inadequate to deal with datasets of large volume, high dimensionality, and complex structure. Therefore, it is important to develop algorithms such as low-rank tensor decomposition for data compression, dimensionality reduction, and approximation. With the advancement in technology, high-dimensional images are becoming ubiquitous in the medical field. In lung radiation therapy, the respiratory motion of the lung introduces variabilities during treatment as the tumor inside the lung is moving, which brings challenges to the precise delivery of radiation to the tumor. Several approaches to quantifying this uncertainty propose using a model to formulate the motion through a mathematical function over time. [Li et al., 2011] uses principal component analysis (PCA) to propose one such model using each image as a long vector. However, the images come in a multidimensional arrays, and vectorization breaks the spatial structure. Driven by the needs to develop low-rank tensor decomposition and provided the 4DCT and Displacement Vector Field (DVF), we introduce two tensor decompositions, Population Value Decomposition (PVD) and Population Tucker Decomposition (PTD), to estimate the respiratory lung motion with high levels of accuracy and data compression. The first algorithm is a generalization of PVD [Crainiceanu et al., 2011] to higher order tensor. The second algorithm generalizes the concept of PVD using Tucker decomposition. Both algorithms are tested on clinical and phantom DVFs. New metrics for measuring the model performance are developed in our research. Results of the two new algorithms are compared to the result of the PCA algorithm.
Style APA, Harvard, Vancouver, ISO itp.
13

Wolf, Alexander Sebastian Johannes Wolf [Verfasser], Reinhold [Akademischer Betreuer] Schneider, Reinhold [Gutachter] Schneider, Gitta [Gutachter] Kutyniok i Lars [Gutachter] Grasedyck. "Low rank tensor decompositions for high dimensional data approximation, recovery and prediction / Alexander Sebastian Johannes Wolf Wolf ; Gutachter: Reinhold Schneider, Gitta Kutyniok, Lars Grasedyck ; Betreuer: Reinhold Schneider". Berlin : Technische Universität Berlin, 2019. http://d-nb.info/118242399X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Harmouch, Jouhayna. "Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4236/document.

Pełny tekst źródła
Streszczenie:
On étudie la décomposition de matrice de Hankel comme une somme des matrices de Hankel de rang faible en corrélation avec la décomposition de son symbole σ comme une somme des séries exponentielles polynomiales. On présente un nouvel algorithme qui calcule la décomposition d’un opérateur de Hankel de petit rang et sa décomposition de son symbole en exploitant les propriétés de l’algèbre quotient de Gorenstein . La base de est calculée à partir la décomposition en valeurs singuliers d’une sous-matrice de matrice de Hankel . Les fréquences et les poids se déduisent des vecteurs propres généralisés des sous matrices de Hankel déplacés de . On présente une formule pour calculer les poids en fonction des vecteurs propres généralisés au lieu de résoudre un système de Vandermonde. Cette nouvelle méthode est une généralisation de Pencil méthode déjà utilisée pour résoudre un problème de décomposition de type de Prony. On analyse son comportement numérique en présence des moments contaminés et on décrit une technique de redimensionnement qui améliore la qualité numérique des fréquences d’une grande amplitude. On présente une nouvelle technique de Newton qui converge localement vers la matrice de Hankel de rang faible la plus proche au matrice initiale et on montre son effet à corriger les erreurs sur les moments. On étudie la décomposition d’un tenseur multi-symétrique T comme une somme des puissances de produit des formes linéaires en corrélation avec la décomposition de son dual comme une somme pondérée des évaluations. On utilise les propriétés de l’algèbre de Gorenstein associée pour calculer la décomposition de son dual qui est définie à partir d’une série formelle τ. On utilise la décomposition d’un opérateur de Hankel de rang faible associé au symbole τ comme une somme des opérateurs indécomposables de rang faible. La base d’ est choisie de façon que la multiplication par certains variables soit possible. On calcule les coordonnées des points et leurs poids correspondants à partir la structure propre des matrices de multiplication. Ce nouvel algorithme qu’on propose marche bien pour les matrices de Hankel de rang faible. On propose une approche théorique de la méthode dans un espace de dimension n. On donne un exemple numérique de la décomposition d’un tenseur multilinéaire de rang 3 en dimension 3 et un autre exemple de la décomposition d’un tenseur multi-symétrique de rang 3 en dimension 3. On étudie le problème de complétion de matrice de Hankel comme un problème de minimisation. On utilise la relaxation du problème basé sur la minimisation de la norme nucléaire de la matrice de Hankel. On adapte le SVT algorithme pour le cas d’une matrice de Hankel et on calcule l’opérateur linéaire qui décrit les contraintes du problème de minimisation de norme nucléaire. On montre l’utilité du problème de décomposition à dissocier un modèle statistique ou biologique
We study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model
Style APA, Harvard, Vancouver, ISO itp.
15

Lestandi, Lucas. "Approximations de rang faible et modèles d'ordre réduit appliqués à quelques problèmes de la mécanique des fluides". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0186/document.

Pełny tekst źródła
Streszczenie:
Les dernières décennies ont donné lieux à d'énormes progrès dans la simulation numérique des phénomènes physiques. D'une part grâce au raffinement des méthodes de discrétisation des équations aux dérivées partielles. Et d'autre part grâce à l'explosion de la puissance de calcul disponible. Pourtant, de nombreux problèmes soulevés en ingénierie tels que les simulations multi-physiques, les problèmes d'optimisation et de contrôle restent souvent hors de portée. Le dénominateur commun de ces problèmes est le fléau des dimensions. Un simple problème tridimensionnel requiert des centaines de millions de points de discrétisation auxquels il faut souvent ajouter des milliers de pas de temps pour capturer des dynamiques complexes. L'avènement des supercalculateurs permet de générer des simulations de plus en plus fines au prix de données gigantesques qui sont régulièrement de l'ordre du pétaoctet. Malgré tout, cela n'autorise pas une résolution ``exacte'' des problèmes requérant l'utilisation de plusieurs paramètres. L'une des voies envisagées pour résoudre ces difficultés est de proposer des représentations ne souffrant plus du fléau de la dimension. Ces représentations que l'on appelle séparées sont en fait un changement de paradigme. Elles vont convertir des objets tensoriels dont la croissance est exponentielle $n^d$ en fonction du nombre de dimensions $d$ en une représentation approchée dont la taille est linéaire en $d$. Pour le traitement des données tensorielles, une vaste littérature a émergé ces dernières années dans le domaine des mathématiques appliquées.Afin de faciliter leurs utilisations dans la communauté des mécaniciens et en particulier pour la simulation en mécanique des fluides, ce manuscrit présente dans un vocabulaire rigoureux mais accessible les formats de représentation des tenseurs et propose une étude détaillée des algorithmes de décomposition de données qui y sont associées. L'accent est porté sur l'utilisation de ces méthodes, aussi la bibliothèque de calcul texttt{pydecomp} développée est utilisée pour comparer l'efficacité de ces méthodes sur un ensemble de cas qui se veut représentatif. La seconde partie de ce manuscrit met en avant l'étude de l'écoulement dans une cavité entraînée à haut nombre de Reynolds. Cet écoulement propose une physique très riche (séquence de bifurcation de Hopf) qui doit être étudiée en amont de la construction de modèle réduit. Cette étude est enrichie par l'utilisation de la décomposition orthogonale aux valeurs propres (POD). Enfin une approche de construction ``physique'', qui diffère notablement des développements récents pour les modèles d'ordre réduit, est proposée. La connaissance détaillée de l'écoulement permet de construire un modèle réduit simple basé sur la mise à l'échelle des fréquences d'oscillation (time-scaling) et des techniques d'interpolation classiques (Lagrange,..)
Numerical simulation has experienced tremendous improvements in the last decadesdriven by massive growth of computing power. Exascale computing has beenachieved this year and will allow solving ever more complex problems. But suchlarge systems produce colossal amounts of data which leads to its own difficulties.Moreover, many engineering problems such as multiphysics or optimisation andcontrol, require far more power that any computer architecture could achievewithin the current scientific computing paradigm. In this thesis, we proposeto shift the paradigm in order to break the curse of dimensionality byintroducing decomposition and building reduced order models (ROM) for complexfluid flows.This manuscript is organized into two parts. The first one proposes an extendedreview of data reduction techniques and intends to bridge between appliedmathematics community and the computational mechanics one. Thus, foundingbivariate separation is studied, including discussions on the equivalence ofproper orthogonal decomposition (POD, continuous framework) and singular valuedecomposition (SVD, discrete matrices). Then a wide review of tensor formats andtheir approximation is proposed. Such work has already been provided in theliterature but either on separate papers or into a purely applied mathematicsframework. Here, we offer to the data enthusiast scientist a comparison ofCanonical, Tucker, Hierarchical and Tensor train formats including theirapproximation algorithms. Their relative benefits are studied both theoreticallyand numerically thanks to the python library texttt{pydecomp} that wasdeveloped during this thesis. A careful analysis of the link between continuousand discrete methods is performed. Finally, we conclude that for mostapplications ST-HOSVD is best when the number of dimensions $d$ lower than fourand TT-SVD (or their POD equivalent) when $d$ grows larger.The second part is centered on a complex fluid dynamics flow, in particular thesingular lid driven cavity at high Reynolds number. This flow exhibits a seriesof Hopf bifurcation which are known to be hard to capture accurately which iswhy a detailed analysis was performed both with classical tools and POD. Oncethis flow has been characterized, emph{time-scaling}, a new ``physics based''interpolation ROM is presented on internal and external flows. This methodsgives encouraging results while excluding recent advanced developments in thearea such as EIM or Grassmann manifold interpolation
Style APA, Harvard, Vancouver, ISO itp.
16

Liu, Zhenjiao. "Incomplete multi-view data clustering with hidden data mining and fusion techniques". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS011.

Pełny tekst źródła
Streszczenie:
Le regroupement de données multivues incomplètes est un axe de recherche majeur dans le domaines de l'exploration de données et de l'apprentissage automatique. Dans les applications pratiques, nous sommes souvent confrontés à des situations où seule une partie des données modales peut être obtenue ou lorsqu'il y a des valeurs manquantes. La fusion de données est une méthode clef pour l'exploration d'informations multivues incomplètes. Résoudre le problème de l'extraction d'informations multivues incomplètes de manière ciblée, parvenir à une collaboration flexible entre les vues visibles et les vues cachées partagées, et améliorer la robustesse sont des défis. Cette thèse se concentre sur trois aspects : l'exploration de données cachées, la fusion collaborative et l'amélioration de la robustesse du regroupement. Les principales contributions sont les suivantes:1) Exploration de données cachées pour les données multi-vues incomplètes : les algorithmes existants ne peuvent pas utiliser pleinement l'observation des informations dans et entre les vues, ce qui entraîne la perte d'une grande quantité d'informations. Nous proposons donc un nouveau modèle de regroupement multi-vues incomplet IMC-NLT (Incomplete Multi-view Clustering Based on NMF and Low-Rank Tensor Fusion) basé sur la factorisation de matrices non négatives et la fusion de tenseurs de faible rang. IMC-NLT utilise d'abord un tenseur de faible rang pour conserver les caractéristiques des vues avec une dimension unifiée. En utilisant une mesure de cohérence, IMC-NLT capture une représentation cohérente à travers plusieurs vues. Enfin, IMC-NLT intègre plusieurs apprentissages dans un modèle unifié afin que les informations cachées puissent être extraites efficacement à partir de vues incomplètes. Des expériences sur cinq jeux de données ont validé les performances d'IMC-NLT.2) Fusion collaborative pour les données multivues incomplètes : notre approche pour résoudre ce problème est le regroupement multivues incomplet par représentation à faible rang. L'algorithme est basé sur une représentation éparse de faible rang et une représentation de sous-espace, dans laquelle les données manquantes sont complétées en utilisant les données d'une modalité et les données connexes d'autres modalités. Pour améliorer la stabilité des résultats de clustering pour des données multi-vues avec différents degrés de manquants, CCIM-SLR utilise le modèle Γ-norm, qui est une méthode de représentation à faible rang ajustable. CCIM-SLR peut alterner entre l'apprentissage de la vue cachée partagée, la vue visible et les partitions de clusters au sein d'un cadre d'apprentissage collaboratif. Un algorithme itératif avec convergence garantie est utilisé pour optimiser la fonction objective proposée.3) Amélioration de la robustesse du regroupement pour les données multivues incomplètes : nous proposons une fusion de la convolution graphique et des goulots d'étranglement de l'information (apprentissage de la représentation multivues incomplète via le goulot d'étranglement de l'information). Nous introduisons la théorie du goulot d'étranglement de l'information afin de filtrer les données parasites contenant des détails non pertinents et de ne conserver que les éléments les plus pertinents. Nous intégrons les informations sur la structure du graphe basées sur les points d'ancrage dans les informations sur le graphe local. Le modèle intègre des représentations multiples à l'aide de goulets d'étranglement de l'information, réduisant ainsi l'impact des informations redondantes dans les données. Des expériences approfondies sont menées sur plusieurs ensembles de données du monde réel, et les résultats démontrent la supériorité de IMRL-AGI. Plus précisément, IMRL-AGI montre des améliorations significatives dans la précision du clustering et de la classification, même en présence de taux élevés de données manquantes par vue (par exemple, 10,23 % et 24,1% respectivement sur l'ensemble de données ORL)
Incomplete multi-view data clustering is a research direction that attracts attention in the fields of data mining and machine learning. In practical applications, we often face situations where only part of the modal data can be obtained or there are missing values. Data fusion is an important method for incomplete multi-view information mining. Solving incomplete multi-view information mining in a targeted manner, achieving flexible collaboration between visible views and shared hidden views, and improving the robustness have become quite challenging. This thesis focuses on three aspects: hidden data mining, collaborative fusion, and enhancing the robustness of clustering. The main contributions are as follows:1. Hidden data mining for incomplete multi-view data: existing algorithms cannot make full use of the observation of information within and between views, resulting in the loss of a large amount of valuable information, and so we propose a new incomplete multi-view clustering model IMC-NLT (Incomplete Multi-view Clustering Based on NMF and Low-Rank Tensor Fusion) based on non-negative matrix factorization and low-rank tensor fusion. IMC-NLT first uses a low-rank tensor to retain view features with a unified dimension. Using a consistency measure, IMC-NLT captures a consistent representation across multiple views. Finally, IMC-NLT incorporates multiple learning into a unified model such that hidden information can be extracted effectively from incomplete views. We conducted comprehensive experiments on five real-world datasets to validate the performance of IMC-NLT. The overall experimental results demonstrate that the proposed IMC-NLT performs better than several baseline methods, yielding stable and promising results.2. Collaborative fusion for incomplete multi-view data: our approach to address this issue is Incomplete Multi-view Co-Clustering by Sparse Low-Rank Representation (CCIM-SLR). The algorithm is based on sparse low-rank representation and subspace representation, in which jointly missing data is filled using data within a modality and related data from other modalities. To improve the stability of clustering results for multi-view data with different missing degrees, CCIM-SLR uses the Γ-norm model, which is an adjustable low-rank representation method. CCIM-SLR can alternate between learning the shared hidden view, visible view, and cluster partitions within a co-learning framework. An iterative algorithm with guaranteed convergence is used to optimize the proposed objective function. Compared with other baseline models, CCIM-SLR achieved the best performance in the comprehensive experiments on the five benchmark datasets, particularly on those with varying degrees of incompleteness.3. Enhancing the clustering robustness for incomplete multi-view data: we offer a fusion of graph convolution and information bottlenecks (Incomplete Multi-view Representation Learning Through Anchor Graph-based GCN and Information Bottleneck - IMRL-AGI). First, we introduce the information bottleneck theory to filter out the noise data with irrelevant details and retain only the most relevant feature items. Next, we integrate the graph structure information based on anchor points into the local graph information of the state fused into the shared information representation and the information representation learning process of the local specific view, a process that can balance the robustness of the learned features and improve the robustness. Finally, the model integrates multiple representations with the help of information bottlenecks, reducing the impact of redundant information in the data. Extensive experiments are conducted on several real-world datasets, and the results demonstrate the superiority of IMRL-AGI. Specifically, IMRL-AGI shows significant improvements in clustering and classification accuracy, even in the presence of high view missing rates (e.g. 10.23% and 24.1% respectively on the ORL dataset)
Style APA, Harvard, Vancouver, ISO itp.
17

Boizard, Mélanie. "Développement et études de performances de nouveaux détecteurs/filtres rang faible dans des configurations RADAR multidimensionnelles". Electronic Thesis or Diss., Cachan, Ecole normale supérieure, 2013. http://www.theses.fr/2013DENS0063.

Pełny tekst źródła
Streszczenie:
Dans le cadre du traitement statistique du signal, la plupart des algorithmes couramment utilisés reposent sur l'utilisation de la matrice de covariance des signaux étudiés. En pratique, ce sont les versions adaptatives de ces traitements, obtenues en estimant la matrice de covariance à l'aide d'échantillons du signal, qui sont utilisés. Ces algorithmes présentent un inconvénient : ils peuvent nécessiter un nombre d'échantillons important pour obtenir de bons résultats. Lorsque la matrice de covariance possède une structure rang faible, le signal peut alors être décomposé en deux sous-espaces orthogonaux. Les projecteurs orthogonaux sur chacun de ces sous espaces peuvent alors être construits, permettant de développer des méthodes dites rang faible. Les versions adaptatives de ces méthodes atteignent des performances équivalentes à celles des traitements classiques tout en réduisant significativement le nombre d'échantillons nécessaire. Par ailleurs, l'accroissement de la taille des données ne fait que renforcer l'intérêt de ce type de méthode. Cependant, cet accroissement s'accompagne souvent d'un accroissement du nombre de dimensions du système. Deux types d'approches peuvent être envisagées pour traiter ces données : les méthodes vectorielles et les méthodes tensorielles. Les méthodes vectorielles consistent à mettre les données sous forme de vecteurs pour ensuite appliquer les traitements classiques. Cependant, lors de la mise sous forme de vecteur, la structure des données est perdue ce qui peut entraîner une dégradation des performances et/ou un manque de robustesse. Les méthodes tensorielles permettent d'éviter cet écueil. Dans ce cas, la structure est préservée en mettant les données sous forme de tenseurs, qui peuvent ensuite être traités à l'aide de l'algèbre multilinéaire. Ces méthodes sont plus complexes à utiliser puisqu'elles nécessitent d'adapter les algorithmes classiques à ce nouveau contexte. En particulier, l'extension des méthodes rang faible au cas tensoriel nécessite l'utilisation d'une décomposition tensorielle orthogonale. Le but de cette thèse est de proposer et d'étudier des algorithmes rang faible pour des modèles tensoriels. Les contributions de cette thèse se concentrent autour de trois axes. Un premier aspect concerne le calcul des performances théoriques d'un algorithme MUSIC tensoriel basé sur la Higher Order Singular Value Decomposition (HOSVD) et appliqué à un modèle de sources polarisées. La deuxième partie concerne le développement de filtres rang faible et de détecteurs rang faible dans un contexte tensoriel. Ce travail s'appuie sur une nouvelle définition de tenseur rang faible et sur une nouvelle décomposition tensorielle associée : l'Alternative Unfolding HOSVD (AU-HOSVD). La dernière partie de ce travail illustre l'intérêt de l'approche tensorielle basée sur l'AU-HOSVD, en appliquant ces algorithmes à configuration radar particulière: le Traitement Spatio-Temporel Adaptatif ou Space-Time Adaptive Process (STAP)
Most of statistical signal processing algorithms, are based on the use of signal covariance matrix. In practical cases this matrix is unknown and is estimated from samples. The adaptive versions of the algorithms can then be applied, replacing the actual covariance matrix by its estimate. These algorithms present a major drawback: they require a large number of samples in order to obtain good results. If the covariance matrix is low-rank structured, its eigenbasis may be separated in two orthogonal subspaces. Thanks to the LR approximation, orthogonal projectors onto theses subspaces may be used instead of the noise CM in processes, leading to low-rank algorithms. The adaptive versions of these algorithms achieve similar performance to classic classic ones with less samples. Furthermore, the current increase in the size of the data strengthens the relevance of this type of method. However, this increase may often be associated with an increase of the dimension of the system, leading to multidimensional samples. Such multidimensional data may be processed by two approaches: the vectorial one and the tensorial one. The vectorial approach consists in unfolding the data into vectors and applying the traditional algorithms. These operations are not lossless since they involve a loss of structure. Several issues may arise from this loss: decrease of performance and/or lack of robustness. The tensorial approach relies on multilinear algebra, which provides a good framework to exploit these data and preserve their structure information. In this context, data are represented as multidimensional arrays called tensor. Nevertheless, generalizing vectorial-based algorithms to the multilinear algebra framework is not a trivial task. In particular, the extension of low-rank algorithm to tensor context implies to choose a tensor decomposition in order to estimate the signal and noise subspaces. The purpose of this thesis is to derive and study tensor low-rank algorithms. This work is divided into three parts. The first part deals with the derivation of theoretical performance of a tensor MUSIC algorithm based on Higher Order Singular Value Decomposition (HOSVD) and its application to a polarized source model. The second part concerns the derivation of tensor low-rank filters and detectors in a general low-rank tensor context. This work is based on a new definition of tensor rank and a new orthogonal tensor decomposition : the Alternative Unfolding HOSVD (AU-HOSVD). In the last part, these algorithms are applied to a particular radar configuration : the Space-Time Adaptive Process (STAP). This application illustrates the interest of tensor approach and algorithms based on AU-HOSVD
Style APA, Harvard, Vancouver, ISO itp.
18

Boizard, Maxime. "Développement et études de performances de nouveaux détecteurs/filtres rang faible dans des configurations RADAR multidimensionnelles". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00996967.

Pełny tekst źródła
Streszczenie:
Dans le cadre du traitement statistique du signal, la plupart des algorithmes couramment utilisés reposent sur l'utilisation de la matrice de covariance des signaux étudiés. En pratique, ce sont les versions adaptatives de ces traitements, obtenues en estimant la matrice de covariance à l'aide d'échantillons du signal, qui sont utilisés. Ces algorithmes présentent un inconvénient : ils peuvent nécessiter un nombre d'échantillons important pour obtenir de bons résultats. Lorsque la matrice de covariance possède une structure rang faible, le signal peut alors être décomposé en deux sous-espaces orthogonaux. Les projecteurs orthogonaux sur chacun de ces sous espaces peuvent alors être construits, permettant de développer des méthodes dites rang faible. Les versions adaptatives de ces méthodes atteignent des performances équivalentes à celles des traitements classiques tout en réduisant significativement le nombre d'échantillons nécessaire. Par ailleurs, l'accroissement de la taille des données ne fait que renforcer l'intérêt de ce type de méthode. Cependant, cet accroissement s'accompagne souvent d'un accroissement du nombre de dimensions du système. Deux types d'approches peuvent être envisagées pour traiter ces données : les méthodes vectorielles et les méthodes tensorielles. Les méthodes vectorielles consistent à mettre les données sous forme de vecteurs pour ensuite appliquer les traitements classiques. Cependant, lors de la mise sous forme de vecteur, la structure des données est perdue ce qui peut entraîner une dégradation des performances et/ou un manque de robustesse. Les méthodes tensorielles permettent d'éviter cet écueil. Dans ce cas, la structure est préservée en mettant les données sous forme de tenseurs, qui peuvent ensuite être traités à l'aide de l'algèbre multilinéaire. Ces méthodes sont plus complexes à utiliser puisqu'elles nécessitent d'adapter les algorithmes classiques à ce nouveau contexte. En particulier, l'extension des méthodes rang faible au cas tensoriel nécessite l'utilisation d'une décomposition tensorielle orthogonale. Le but de cette thèse est de proposer et d'étudier des algorithmes rang faible pour des modèles tensoriels. Les contributions de cette thèse se concentrent autour de trois axes. Un premier aspect concerne le calcul des performances théoriques d'un algorithme MUSIC tensoriel basé sur la Higher Order Singular Value Decomposition (HOSVD) et appliqué à un modèle de sources polarisées. La deuxième partie concerne le développement de filtres rang faible et de détecteurs rang faible dans un contexte tensoriel. Ce travail s'appuie sur une nouvelle définition de tenseur rang faible et sur une nouvelle décomposition tensorielle associée : l'Alternative Unfolding HOSVD (AU-HOSVD). La dernière partie de ce travail illustre l'intérêt de l'approche tensorielle basée sur l'AU-HOSVD, en appliquant ces algorithmes à configuration radar particulière: le Traitement Spatio-Temporel Adaptatif ou Space-Time Adaptive Process (STAP).
Style APA, Harvard, Vancouver, ISO itp.
19

Goulart, José Henrique De Morais. "Estimation de modèles tensoriels structurés et récupération de tenseurs de rang faible". Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4147/document.

Pełny tekst źródła
Streszczenie:
Dans la première partie de cette thèse, on formule deux méthodes pour le calcul d'une décomposition polyadique canonique avec facteurs matriciels linéairement structurés (tels que des facteurs de Toeplitz ou en bande): un algorithme de moindres carrés alternés contraint (CALS) et une solution algébrique dans le cas où tous les facteurs sont circulants. Des versions exacte et approchée de la première méthode sont étudiées. La deuxième méthode fait appel à la transformée de Fourier multidimensionnelle du tenseur considéré, ce qui conduit à la résolution d'un système d'équations monomiales homogènes. Nos simulations montrent que la combinaison de ces approches fournit un estimateur statistiquement efficace, ce qui reste vrai pour d'autres combinaisons de CALS dans des scénarios impliquant des facteurs non-circulants. La seconde partie de la thèse porte sur la récupération de tenseurs de rang faible et, en particulier, sur le problème de reconstruction tensorielle (TC). On propose un algorithme efficace, noté SeMPIHT, qui emploie des projections séquentiellement optimales par mode comme opérateur de seuillage dur. Une borne de performance est dérivée sous des conditions d'isométrie restreinte habituelles, ce qui fournit des bornes d'échantillonnage sous-optimales. Cependant, nos simulations suggèrent que SeMPIHT obéit à des bornes optimales pour des mesures Gaussiennes. Des heuristiques de sélection du pas et d'augmentation graduelle du rang sont aussi élaborées dans le but d'améliorer sa performance. On propose aussi un schéma d'imputation pour TC basé sur un seuillage doux du coeur du modèle de Tucker et son utilité est illustrée avec des données réelles de trafic routier
In the first part of this thesis, we formulate two methods for computing a canonical polyadic decomposition having linearly structured matrix factors (such as, e.g., Toeplitz or banded factors): a general constrained alternating least squares (CALS) algorithm and an algebraic solution for the case where all factors are circulant. Exact and approximate versions of the former method are studied. The latter method relies on a multidimensional discrete-time Fourier transform of the target tensor, which leads to a system of homogeneous monomial equations whose resolution provides the desired circulant factors. Our simulations show that combining these approaches yields a statistically efficient estimator, which is also true for other combinations of CALS in scenarios involving non-circulant factors. The second part of the thesis concerns low-rank tensor recovery (LRTR) and, in particular, the tensor completion (TC) problem. We propose an efficient algorithm, called SeMPIHT, employing sequentially optimal modal projections as its hard thresholding operator. Then, a performance bound is derived under usual restricted isometry conditions, which however yield suboptimal sampling bounds. Yet, our simulations suggest SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection and gradual rank increase heuristics are also elaborated in order to improve performance. We also devise an imputation scheme for TC based on soft thresholding of a Tucker model core and illustrate its utility in completing real-world road traffic data acquired by an intelligent transportation
Style APA, Harvard, Vancouver, ISO itp.
20

Walach, Hanna Maria [Verfasser], i Christian [Akademischer Betreuer] Lubich. "Time integration for the dynamical low-rank approximation of matrices and tensors / Hanna Maria Walach ; Betreuer: Christian Lubich". Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1190639831/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Garreis, Sebastian [Verfasser], Michael [Akademischer Betreuer] Ulbrich, Matthias [Gutachter] Heinkenschloss, Christian [Gutachter] Clason i Michael [Gutachter] Ulbrich. "Optimal Control under Uncertainty: Theory and Numerical Solution with Low-Rank Tensors / Sebastian Garreis ; Gutachter: Matthias Heinkenschloss, Christian Clason, Michael Ulbrich ; Betreuer: Michael Ulbrich". München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1179360737/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Ashraphijuo, Morteza. "Low-Rank Tensor Completion - Fundamental Limits and Efficient Algorithms". Thesis, 2020. https://doi.org/10.7916/d8-a3j9-zn71.

Pełny tekst źródła
Streszczenie:
This dissertation is motivated by the increasing applications of high-dimensional large-scale data sets in various fields and lack of theoretical understanding of the existing algorithms as well as lack of efficient algorithms in many cases. Hence, identifying the geometrical properties of data sets is essential for many data processing tasks, such as data retrieval and denoising. In Part I, we derive the fundamental limits on the sampling rate required to study three important problems (i) low-rank data completion, (ii) rank estimation, and (iii) data clustering. In Chapter 2 we characterize the geometrical conditions on the sampling pattern, i.e., locations of the sampled entries, for finite and unique completability of a low-rank tensor, assuming that its rank vector is given or estimated. To this end, we propose a manifold analysis and study the independence of a set of polynomials defined based on the sampling pattern. Then, using the polynomial analysis, we derive a lower bound on the sampling rate such that it guarantees that the proposed conditions on the sampling patterns for finite and unique completability hold true with high probability. Then, in Chapter 3, we study the problem of rank estimation, where a data structure is partially sampled and we propose a geometrical analysis on the sampling pattern to estimate the true value of rank for various data structures by providing extremely tight lower and upper bounds on the rank value. And in Chapters 4 and 5, we make use of the developed tools to obtain a lower bound on the sampling rate to be able to correctly cluster a union of sampled matrices or tensors by identifying their corresponding unknown subspaces. In Part II, first in Chapter 6, motivated by the algebraic tools developed in Part I, we develop a data completion algorithm based on solving a set of polynomial equations using Newton's method, that is effective especially when the sampling rate is low. Then, in Chapter 7, we consider a data structure consisting of a union of nested low-rank matrix or tensor subspaces, and develop a structured alternating minimization-based approach for completing such data, that is capable of taking advantage of multiple rank constraints simultaneously to achieve faster convergence and higher recovery accuracy.
Style APA, Harvard, Vancouver, ISO itp.
23

Chen, Yi-Lei, i 陳以雷. "Manifold Guided Tensor Completion under Low-rank Structure". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/08586749581330150625.

Pełny tekst źródła
Streszczenie:
博士
國立清華大學
資訊工程學系
102
In this dissertation, we focus on tensor completion, which is closely related to the ubiquitous missing data problem in real-world applications. Given a tensor with incomplete entries, existing methods assume the desired tensor exhibits low-rank structure. Predicting missing entries then boils down to recovering a low-rank tensor from given entries. Factorization schemes and completion schemes are two popular methodologies. As the number of missing entries increases, factorization schemes overfit the model structure due to their incorrectly predefined tensor’s rank, while completion schemes fail to interpret the model factors because they solely rely on rank minimization. Therefore, we introduce a novel concept to break the current limitations: complete the missing entries and simultaneously capture the underlying model structure. We propose a method called Simultaneous Tensor Decomposition and Completion (STDC). The major contributions are three-fold. First, we leverage rank minimization with Tucker model decomposition; i.e., we automate rank estimation while carefully maintain the latent tensor structure. Second, considering the informative semantics (named factor priors in our work) of real-world tensor objects, we discover the latent manifold with a new presented methodology, called Multilinear Graph Embedding (MGE), and study its significance in tensor completion. Finally, because factor priors are task-dependent and can be unavailable, we further propose a prior-free extension with a new presented methodology, called Permutation on Manifolds (PoM), to automate joint-manifold learning. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data, and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the superiority of our method and its potential usage in tensor-based applications.
Style APA, Harvard, Vancouver, ISO itp.
24

Benedikt, Udo. "Low-Rank Tensor Approximation in post Hartree-Fock Methods". Doctoral thesis, 2013. https://monarch.qucosa.de/id/qucosa%3A19999.

Pełny tekst źródła
Streszczenie:
In this thesis the application of novel tensor decomposition and tensor representation techniques in highly accurate post Hartree-Fock methods is evaluated. These representation techniques can help to overcome the steep scaling behaviour of high level ab-initio calculations with increasing system size and therefore break the "curse of dimensionality". After a comparison of various tensor formats the application of the "canonical polyadic" format (CP) is described in detail. There, especially the casting of a normal, index based tensor into the CP format (tensor decomposition) and a method for a low rank approximation (rank reduction) of the two-electron integrals in the AO basis are investigated. The decisive quantity for the applicability of the CP format is the scaling of the rank with increasing system and basis set size. The memory requirements and the computational effort for tensor manipulations in the CP format are only linear in the number of dimensions but still depend on the expansion length (rank) of the approximation. Furthermore, the AO-MO transformation and a MP2 algorithm with decomposed tensors in the CP format is evaluated and the scaling with increasing system and basis set size is investigated. Finally, a Coupled-Cluster algorithm based only on low-rank CP representation of the MO integrals is developed. There, especially the successive tensor contraction during the iterative solution of the amplitude equations and the error propagation upon multiple application of the reduction procedure are discussed. In conclusion the overall complexity of a Coupled-Cluster procedure with tensors in CP format is evaluated and some possibilities for improvements of the rank reduction procedure tailored to the needs in electronic structure calculations are shown.
Die vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt.
Style APA, Harvard, Vancouver, ISO itp.
25

Wang, Yu-Sheng, i 王裕盛. "Moving Object Detection via Sparse and Low-Rank Tensor Modeling". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/14647869094424654385.

Pełny tekst źródła
Streszczenie:
碩士
國立清華大學
資訊工程學系
101
Background subtraction is a common method utilized to detect moving objects. The main idea is estimate the background model according to the non-occluded background. However, when the foreground is comparatively large or the moving displacement of foreground is negligible, the estimated result will be inaccurate because the background is occluded by foreground most of the time. In order to overcome the occluded background problem, we consider the spatial low-rank property of background, and propose to combine the spatial low-rank property and the temporal low-rank property to better characterize the strong correlation existing in spatio-temporal dimension of the background. The proposed method extends the low-rank matrix modeling to low-rank tensor modeling for the background. Experimental results show that the low-rank tensor modeling improves the result under occluded background or highly structured background.
Style APA, Harvard, Vancouver, ISO itp.
26

David, Li-Wei, i 郭立維. "Completely positive interpolations and preservers on tensor products of low rank matrices". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/14395807928517454426.

Pełny tekst źródła
Streszczenie:
博士
國立中山大學
應用數學系研究所
102
In this thesis, we will consider the following problems: (i). We study linear maps of matrix algebras, which preserve some spectral functions on a small subset of mn x mn matrices. (ii). We study completely positive interpolations between normal matrices (operators) using their spectrum and the Choi-Kraus form. We obtain a necessary and sufficient condition for the existence of a completely positive interpolation in terms of conditions about numerical ranges and dilations. Keywords:
Style APA, Harvard, Vancouver, ISO itp.
27

Wikén, Victor. "An Investigation of Low-Rank Decomposition for Increasing Inference Speed in Deep Neural Networks With Limited Training Data". Thesis, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235370.

Pełny tekst źródła
Streszczenie:
In this study, to increase inference speed of convolutional neural networks, the optimization technique low-rank tensor decomposition has been implemented and applied to AlexNet which had been trained to classify dog breeds. Due to a small training set, transfer learning was used in order to be able to classify dog breeds. The purpose of the study is to investigate how effective low-rank tensor decomposition is when the training set is limited. The results obtained from this study, compared to a previous study, indicate that there is a strong relationship between the effects of the tensor decomposition and how much available training data exists. A significant speed up can be obtained in the different convolutional layers using tensor decomposition. However, since there is a need to retrain the network after the decomposition and due to the limited dataset there is a slight decrease in accuracy.
För att öka inferenshastigheten hos faltningssnätverk, har i denna studie optimeringstekniken low-rank tensor decomposition implementerats och applicerats på AlexNet, som har tränats för att klassificera hundraser. På grund av en begränsad mängd träningsdata användes transfer learning för uppgiften. Syftet med studien är att undersöka hur effektiv low-rank tensor decomposition är när träningsdatan är begränsad. Jämfört med resultaten från en tidigare studie visar resultaten från denna studie att det finns ett starkt samband mellan effekterna av low-rank tensor decomposition och hur mycket tillgänglig träningsdata som finns. En signifikant hastighetsökning kan uppnås i de olika faltningslagren med hjälp av low-rank tensor decomposition. Eftersom det finns ett behov av att träna om nätverket efter dekompositionen och på grund av den begränsade mängden data så uppnås hastighetsökningen dock på bekostnad av en viss minskning i precisionen för modellen.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii