Gotowa bibliografia na temat „Low-light enhancement and denoising”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low-light enhancement and denoising”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Low-light enhancement and denoising"
Carré, Maxime, i Michel Jourlin. "Extending Camera’s Capabilities in Low Light Conditions Based on LIP Enhancement Coupled with CNN Denoising". Sensors 21, nr 23 (27.11.2021): 7906. http://dx.doi.org/10.3390/s21237906.
Pełny tekst źródłaZhang, Jialiang, Ruiwen Ji, Jingwen Wang, Hongcheng Sun i Mingye Ju. "DEGAN: Decompose-Enhance-GAN Network for Simultaneous Low-Light Image Lightening and Denoising". Electronics 12, nr 14 (11.07.2023): 3038. http://dx.doi.org/10.3390/electronics12143038.
Pełny tekst źródłaKim, Minjae, Dubok Park, David Han i Hanseok Ko. "A novel approach for denoising and enhancement of extremely low-light video". IEEE Transactions on Consumer Electronics 61, nr 1 (luty 2015): 72–80. http://dx.doi.org/10.1109/tce.2015.7064113.
Pełny tekst źródłaMalik, Sameer, i Rajiv Soundararajan. "A low light natural image statistical model for joint contrast enhancement and denoising". Signal Processing: Image Communication 99 (listopad 2021): 116433. http://dx.doi.org/10.1016/j.image.2021.116433.
Pełny tekst źródłaDas Mou, Trisha, Saadia Binte Alam, Md Hasibur Rahman, Gautam Srivastava, Mahady Hasan i Mohammad Faisal Uddin. "Multi-Range Sequential Learning Based Dark Image Enhancement with Color Upgradation". Applied Sciences 13, nr 2 (12.01.2023): 1034. http://dx.doi.org/10.3390/app13021034.
Pełny tekst źródłaHan, Guang, Yingfan Wang, Jixin Liu i Fanyu Zeng. "Low-light images enhancement and denoising network based on unsupervised learning multi-stream feature modeling". Journal of Visual Communication and Image Representation 96 (październik 2023): 103932. http://dx.doi.org/10.1016/j.jvcir.2023.103932.
Pełny tekst źródłaHu, Linshu, Mengjiao Qin, Feng Zhang, Zhenhong Du i Renyi Liu. "RSCNN: A CNN-Based Method to Enhance Low-Light Remote-Sensing Images". Remote Sensing 13, nr 1 (26.12.2020): 62. http://dx.doi.org/10.3390/rs13010062.
Pełny tekst źródłaZhao, Meng Ling, i Min Xia Jiang. "Research on Enhanced of Mine-Underground Picture". Advanced Materials Research 490-495 (marzec 2012): 548–52. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.548.
Pełny tekst źródłaWu, Zeju, Yang Ji, Lijun Song i Jianyuan Sun. "Underwater Image Enhancement Based on Color Correction and Detail Enhancement". Journal of Marine Science and Engineering 10, nr 10 (17.10.2022): 1513. http://dx.doi.org/10.3390/jmse10101513.
Pełny tekst źródłaXu, Xiaogang, Ruixing Wang, Chi-Wing Fu i Jiaya Jia. "Deep Parametric 3D Filters for Joint Video Denoising and Illumination Enhancement in Video Super Resolution". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 3 (26.06.2023): 3054–62. http://dx.doi.org/10.1609/aaai.v37i3.25409.
Pełny tekst źródłaRozprawy doktorskie na temat "Low-light enhancement and denoising"
Dalasari, Venkata Gopi Krishna, i Sri Krishna Jayanty. "Low Light Video Enhancement along with Objective and Subjective Quality Assessment". Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13500.
Pełny tekst źródłaBagchi, Deblin. "Transfer learning approaches for feature denoising and low-resource speech recognition". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577641434371497.
Pełny tekst źródłaLi, Meng. "Low-Observable Object Detection and Tracking Using Advanced Image Processing Techniques". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396465762.
Pełny tekst źródłaMiller, Sarah Victoria. "Mulit-Resolution Aitchison Geometry Image Denoising for Low-Light Photography". University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1596444315236623.
Pełny tekst źródłaChikkamadal, Manjunatha Prathiksha. "Aitchison Geometry and Wavelet Based Joint Demosaicking and Denoising for Low Light Imaging". University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1627842487059544.
Pełny tekst źródłaCASULA, ESTER ANNA RITA. "Low mass dimuon production with the ALICE muon spectrometer". Doctoral thesis, Università degli Studi di Cagliari, 2014. http://hdl.handle.net/11584/266451.
Pełny tekst źródłaLandin, Roman. "Object Detection with Deep Convolutional Neural Networks in Images with Various Lighting Conditions and Limited Resolution". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300055.
Pełny tekst źródłaDatorseende är en nyckelkomponent i alla autonoma system. Applikationer för datorseende i realtid är beroende av en korrekt detektering och klassificering av objekt. En detekteringsalgoritm som inte kan garantera rimlig noggrannhet är inte tillämpningsbar i realtidsscenarier, där huvudmålet är säkerhet. Faktorer som påverkar detekteringsnoggrannheten är belysningförhållanden och bildupplösning. Dessa bidrar till degradering av objekt och leder till låg klassificerings- och detekteringsnoggrannhet. Senaste utvecklingar av Convolutional Neural Networks (CNNs) -baserade algoritmer erbjuder möjligheter för förbättring av bilder med dålig belysning och bildgenerering med superupplösning vilket gör det möjligt att kombinera sådana modeller för att förbättra bildkvaliteten och öka detekteringsnoggrannheten. I denna uppsats utvärderas olika CNN-modeller för superupplösning och förbättring av bilder med dålig belysning genom att jämföra genererade bilder med det faktiska data. För att kvantifiera inverkan av respektive modell på detektionsnoggrannhet utvärderades en detekteringsprocedur på genererade bilder. Experimentella resultat utvärderades på bilder utvalda från NoghtOwls och Caltech datauppsättningar för fotgängare och visade att bildgenerering med superupplösning och bildförbättring i svagt ljus förbättrar noggrannheten med en betydande marginal. Dessutom har det bevisats att en kaskad av superupplösning-generering och förbättring av bilder med dålig belysning ytterligare ökar noggrannheten. Den största nackdelen med sådana kaskader är relaterad till en ökad beräkningstid som begränsar möjligheterna för en rad realtidsapplikationer.
Chen, Hsueh-I., i 陳學儀. "Deep Burst Low Light Image Enhancement with Alignment, Denoising and Blending". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/sfk685.
Pełny tekst źródła國立臺灣大學
資訊網路與多媒體研究所
106
Taking photos under low light environment is always a challenge for most camera. In this thesis, we propose a neural network pipeline for processing burst short-exposure raw data. Our method contains alignment, denoising and blending. First, we use FlowNet2.0 to predict the optical flow between burst images and align these burst images. And then, we feed the aligned burst raw data into a DenoiseUNet, which includes denoise-part and color-part, to generate an RGB image. Finally, we use a MaskUNet to generate a mask that can distinguish misalignment. We blend the outputs from single raw image and from burst raw images by the mask. Our method proves that using burst inputs has significantly improvement than single input.
Malik, Sameer. "Low Light Image Restoration: Models, Algorithms and Learning with Limited Data". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6120.
Pełny tekst źródłaWang, Szu-Chieh, i 王思傑. "Extreme Low Light Image Enhancement with Generative Adversarial Networks". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/cz8pqb.
Pełny tekst źródła國立臺灣大學
資訊工程學研究所
107
Taking photos under low light environments is always a challenge for current imaging pipelines. Image noise and artifacts corrupt the image. Tak- ing the great success of deep learning into consideration recently, it may be straightforward to train a deep convolutional network to perform enhance- ment on such images to restore the underlying clean image. However, the large number of parameters in deep models may require a large amount of data to train. For the low light image enhancement task, paired data requires a short exposure image and a long exposure image to be taken with perfect alignment, which may not be achievable in every scene, thus limiting the choice of possible scenes to capture paired data and increasing the effort to collect training data. Also, data-driven solutions tend to replace the entire camera pipeline and cannot be easily integrated to existing pipelines. There- fore, we propose to handle the task with our 2-stage pipeline, consisting of an imperfect denoise network, and a bias correction net BC-UNet. Our method only requires noisy bursts of short exposure images and unpaired long expo- sure images, relaxing the effort of collecting training data. Also, our method works in raw domain and is capable of being easily integrated into the ex- isting camera pipeline. Our method achieves comparable improvements to other methods under the same settings.
Książki na temat "Low-light enhancement and denoising"
Hong, M. H. Laser applications in nanotechnology. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.24.
Pełny tekst źródłaCzęści książek na temat "Low-light enhancement and denoising"
Li, Mading, Jiaying Liu, Wenhan Yang i Zongming Guo. "Joint Denoising and Enhancement for Low-Light Images via Retinex Model". W Communications in Computer and Information Science, 91–99. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8108-8_9.
Pełny tekst źródłaVogt, Carson, Geng Lyu i Kartic Subr. "Lightless Fields: Enhancement and Denoising of Light-Deficient Light Fields". W Advances in Visual Computing, 383–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64556-4_30.
Pełny tekst źródłaWang, Haodian, Yang Wang, Yang Cao i Zheng-Jun Zha. "Fusion-Based Low-Light Image Enhancement". W MultiMedia Modeling, 121–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27077-2_10.
Pełny tekst źródłaFotiadou, Konstantina, Grigorios Tsagkatakis i Panagiotis Tsakalides. "Low Light Image Enhancement via Sparse Representations". W Lecture Notes in Computer Science, 84–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11758-4_10.
Pełny tekst źródłaKavya, Avvaru Greeshma, Uruguti Aparna i Pallikonda Sarah Suhasini. "Enhancement of Low-Light Images Using CNN". W Emerging Research in Computing, Information, Communication and Applications, 1–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1342-5_1.
Pełny tekst źródłaSong, Juan, Liang Zhang, Peiyi Shen, Xilu Peng i Guangming Zhu. "Single Low-Light Image Enhancement Using Luminance Map". W Communications in Computer and Information Science, 101–10. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3005-5_9.
Pełny tekst źródłaTu, Juanjuan, Zongliang Gan i Feng Liu. "Retinex Based Flicker-Free Low-Light Video Enhancement". W Pattern Recognition and Computer Vision, 367–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31723-2_31.
Pełny tekst źródłaNie, Xixi, Zilong Song, Bing Zhou i Yating Wei. "LESN: Low-Light Image Enhancement via Siamese Network". W Lecture Notes in Electrical Engineering, 183–94. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6963-7_17.
Pełny tekst źródłaPanwar, Moomal, i Sanjay B. C. Gaur. "Inception-Based CNN for Low-Light Image Enhancement". W Computational Vision and Bio-Inspired Computing, 533–45. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9573-5_39.
Pełny tekst źródłaPriyadarshini, R., Arvind Bharani, E. Rahimankhan i N. Rajendran. "Low-Light Image Enhancement Using Deep Convolutional Network". W Innovative Data Communication Technologies and Application, 695–705. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9651-3_57.
Pełny tekst źródłaStreszczenia konferencji na temat "Low-light enhancement and denoising"
Feng, Hansen, Lizhi Wang, Yuzhi Wang i Hua Huang. "Learnability Enhancement for Low-light Raw Denoising". W MM '22: The 30th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503161.3548186.
Pełny tekst źródłaGuo, Yu, Yuxu Lu, Meifang Yang i Ryan Wen Liu. "Low-light Image Enhancement with Deep Blind Denoising". W ICMLC 2020: 2020 12th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3383972.3384022.
Pełny tekst źródłaGao, Yin, Chao Yan, Huixiong Zeng, Qiming Li i Jun Li. "Adaptive Low-Light Image Enhancement with Decomposition Denoising". W 2022 7th International Conference on Robotics and Automation Engineering (ICRAE). IEEE, 2022. http://dx.doi.org/10.1109/icrae56463.2022.10056212.
Pełny tekst źródłaLim, Jaemoon, Jin-Hwan Kim, Jae-Young Sim i Chang-Su Kim. "Robust contrast enhancement of noisy low-light images: Denoising-enhancement-completion". W 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351583.
Pełny tekst źródłaSong, Yuda, Yunfang Zhu i Xin Du. "Automatical Enhancement and Denoising of Extremely Low-light Images". W 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412195.
Pełny tekst źródłaWenshuai Yin, Xiangbo Lin i Yi Sun. "A novel framework for low-light colour image enhancement and denoising". W 2011 3rd International Conference on Awareness Science and Technology (iCAST). IEEE, 2011. http://dx.doi.org/10.1109/icawst.2011.6163088.
Pełny tekst źródłaYu, Long, Haonan Su i Cheolkon Jung. "Joint Enhancement And Denoising of Low Light Images Via JND Transform". W ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053027.
Pełny tekst źródłaWang, Jikun, Weixiang Liang, Xianbo Wang i Zhixin Yang. "An Image Denoising and Enhancement Approach for Dynamic Low-light Environment". W 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). IEEE, 2022. http://dx.doi.org/10.1109/ipec54454.2022.9777630.
Pełny tekst źródłaZhou, Dewei, Zongxin Yang i Yi Yang. "Pyramid Diffusion Models for Low-light Image Enhancement". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/199.
Pełny tekst źródłaLi, Lin, Ronggang Wang, Wenmin Wang i Wen Gao. "A low-light image enhancement method for both denoising and contrast enlarging". W 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351501.
Pełny tekst źródłaRaporty organizacyjne na temat "Low-light enhancement and denoising"
Birkmire, Robert, Juejun Hu i Kathleen Richardson. Beyond the Lambertian limit: Novel low-symmetry gratings for ultimate light trapping enhancement in next-generation photovoltaics. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1419008.
Pełny tekst źródła