Gotowa bibliografia na temat „Low latitude ionosphere”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low latitude ionosphere”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Low latitude ionosphere"

1

Chen, Yiding, Libo Liu, Huijun Le, Hui Zhang, and Ruilong Zhang. "Responding trends of ionospheric F2-layer to weaker geomagnetic activities." Journal of Space Weather and Space Climate 12 (2022): 6. http://dx.doi.org/10.1051/swsc/2022005.

Pełny tekst źródła
Streszczenie:
Geomagnetic activities frequently occur in varying degrees. Strong geomagnetic activities, which have been widely investigated, occur occasionally; they can cause distinguishable and significant disturbances in the ionosphere. Weaker geomagnetic activities frequently appear, whereas their effects are generally difficult to be distinguished from complex ionospheric variations. Weaker geomagnetic activities play important roles in ionospheric day-to-day variability thus should deserve further attention. In this study, long-term (longer than one solar cycle) measurements of the F2-layer critical frequency (foF2) were collected to statistically investigate ionospheric responses to weaker geomagnetic activities (Ap < 60). The responding trends of low- to high-latitude foF2 to increasing geomagnetic activity are presented for the first time; they are statistically evident. Both increasing and decreasing trends can occur, depending on latitudes and seasons. The trend gradually transits from high-latitude decreasing trends to equatorial increasing trends with decreasing latitude, and this transition is seasonally dependent. As a result, the trend has a seasonal difference at mid-latitudes. The responding trend is generally more distinct at higher latitudes and in the equatorial region than at mid-latitudes, and the responding intensity is largest at higher latitudes. Although theoretically, geomagnetic activities can disturb the ionosphere through multiple mechanisms, the morphology of the trend suggests that the frequent weaker geomagnetic activities modulate the high- to low-latitude ionosphere mainly through disturbing high-latitude thermospheric composition and further altering the thermospheric background circulation.
Style APA, Harvard, Vancouver, ISO itp.
2

Li, Jianfeng, Yongqian Wang, Shiqi Yang, and Fang Wang. "Characteristics of Low-Latitude Ionosphere Activity and Deterioration of TEC Model during the 7–9 September 2017 Magnetic Storm." Atmosphere 13, no. 9 (2022): 1365. http://dx.doi.org/10.3390/atmos13091365.

Pełny tekst źródła
Streszczenie:
Under the influence of space weather, abnormal disturbances in the ionosphere will distort the ionosphere model seriously and affect the global navigation satellite system negatively. This study analyzes the ionospheric activity characteristics and the ionospheric model performance in low latitude during a strong geomagnetic storm from 7 to 9 September 2017. The research goals are to determine the abnormal behavior of the ionosphere during the geomagnetic storm and to refine the ionosphere model in the low latitude. In the experiment, the vertical total electron content (VTEC) peak value at low latitudes caused by this geomagnetic storm was significantly higher than that on the geomagnetic quiet day, and the VTEC peak value increased by approximately 75%. In the main phase of the geomagnetic storm, the degree of VTEC variation with longitude is significantly higher than that of the geomagnetic quiet day. The VTEC variation trend in the northern hemisphere is more severe than that in the southern hemisphere. In the region where VTEC decreases with longitude, the VTEC in the northern hemisphere is higher than that in the southern hemisphere on the same longitude at low latitudes, and this phenomenon is not significantly affected by the geomagnetic disturbance of the recovery phase. During the geomagnetic storm, the daily minimum value of VTEC at different latitudes was basically the same, approximately 5 TECU, indicating that the nighttime VTEC of the ionosphere in low latitudes was weakly affected by latitude and geomagnetic storms. Geomagnetic disturbances during geomagnetic storms will lead to anomalous features of the “Fountain effect” in the ionosphere at low latitudes. In addition, this geomagnetic storm event caused the accuracy of spherical harmonics (SH), polynomial, and ICE models to decrease by 7.12%, 27.87%, and 48.56%, respectively, and caused serious distortion, which is negative VTEC values fitted by the polynomial model.
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Tong, Zhibin Yu, Zonghua Ding, Wenfeng Nie, and Guochang Xu. "Observation of Ionospheric Gravity Waves Introduced by Thunderstorms in Low Latitudes China by GNSS." Remote Sensing 13, no. 20 (2021): 4131. http://dx.doi.org/10.3390/rs13204131.

Pełny tekst źródła
Streszczenie:
The disturbances of the ionosphere caused by thunderstorms or lightning events in the troposphere have an impact on global navigation satellite system (GNSS) signals. Gravity waves (GWs) triggered by thunderstorms are one of the main factors that drive short-period Travelling Ionospheric Disturbances (TIDs). At mid-latitudes, ionospheric GWs can be detected by GNSS signals. However, at low latitudes, the multi-variability of the ionosphere leads to difficulties in identifying GWs induced by thunderstorms through GNSS data. Though disturbances of the ionosphere during low-latitude thunderstorms have been investigated, the explicit GW observation by GNSS and its propagation pattern are still unclear. In this paper, GWs with periods from 6 to 20 min are extracted from band-pass filtered GNSS carrier phase observations without cycle-slips, and 0.2–0.8 Total Electron Content Unit (TECU) magnitude perturbations are observed when the trajectories of ionospheric pierce points fall into the perturbed region. The propagation speed of 102.6–141.3 m/s and the direction of the propagation indicate that the GWs are propagating upward from a certain thunderstorm at lower atmosphere. The composite results of disturbance magnitude, period, and propagation velocity indicate that GWs initiated by thunderstorms and propagated from the troposphere to the ionosphere are observed by GNSS for the first time in the low-latitude region.
Style APA, Harvard, Vancouver, ISO itp.
4

Yizengaw, Endawoke. "Global Longitudinal Dependence Observation of the Neutral Wind and Ionospheric Density Distribution." International Journal of Geophysics 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/342581.

Pełny tekst źródła
Streszczenie:
The statistical global view of the low-latitude ionospheric density stimulates further interest in studying the strong longitudinal variability of the ionospheric density structures in low-to-equatorial latitudes. However, we are not completely certain how the electrodynamics and ion-neutral coupling proceeds at low latitudes; in particular, the longitudinal difference in the dynamics of plasma structures in the low-to-mid latitude ionosphere is not yet fully understood. Numerical studies of latent heat release in the troposphere have indicated that the lower atmosphere can indeed introduce a longitudinal dependence and variability of the low-latitude ionosphere during quiet conditions. For the first time, we present simultaneous observations of the tidally modulated global wind structure, using TIDI observations, in the E-region and the ionospheric density distribution using ground (global GPS receivers) and space-based (C/NOFS in situ density and GPS TEC on CHAMP) instruments. Our results show that the longitudinally structured zonal wind component could be responsible for the formation of wave number four pattern of the equatorial anomaly.
Style APA, Harvard, Vancouver, ISO itp.
5

Sethi, N. K., M. K. Goel, and K. K. Mahajan. "Solar Cycle variations of ƒ<i>o</i>F2 from IGY to 1990." Annales Geophysicae 20, no. 10 (2002): 1677–85. http://dx.doi.org/10.5194/angeo-20-1677-2002.

Pełny tekst źródła
Streszczenie:
Abstract. Noontime monthly median values of F2-layer critical frequency foF2 (m) for some ionospheric stations representing low- and mid-latitudes are examined for their dependence on solar activity for the years 1957 (IGY) to 1990. This is the period for which ionospheric data in digital form is available in two CD-ROMs at the World Data Center, Boulder. It is observed that at mid-latitudes, foF2 (m) shows nearly a linear relationship with R12 (the 12-month running average of the Zurich sunspot number), though this relation is nonlinear for low-latitudes. These results indicate some departures from the existing information often used in theoretical and applied areas of space research.Key words. Ionosphere (equatorial ionosphere; mid-latitude ionosphere; modelling and forecasting)
Style APA, Harvard, Vancouver, ISO itp.
6

Farah, Ashraf. "Single-Frequency Ionospheric-Delay Correction from BeiDou & GPS Systems for Northern Hemisphere." Artificial Satellites 54, no. 1 (2019): 1–15. http://dx.doi.org/10.2478/arsa-2019-0002.

Pełny tekst źródła
Streszczenie:
Abstract The range delay caused by the ionosphere layer is the major current source of error for GNSS users with single-frequency receivers. GNSS advice users to correct this type of error using ionospheric models whose coefficients are sent in their navigation messages. GPS-users use the Klobuchar model to correct this type of error. GPS navigation message contains the model’s eight coefficients which vary on the basis of seasonal ionospheric variations and average solar flux. The correction accuracy of Klobuchar model is about 50% (rms) of the ionospheric range delay. Beidou system calculates and broadcast 8 parameters of Klobuchar model based on continuous monitoring stations. BeiDou system updates the ionospheric coefficients every two hours. GPS-Klobuchar model uses completely different coefficients than BeiDou-Klobuchar model. This research demonstrates a comparison study between the Klobuchar model using the GPS broadcast coefficients and the same model using BeiDou-coefficients. The correction accuracy offered by the two models has been judged using the most accurate International GNSS Service-Global Ionospheric Maps (IGS-GIMs) for three different-latitude stations along northern hemisphere, one station in low-latitude region, the second station is in mid-latitude region and the third station is in high-latiude region to reflect models’ behaviour in different geographic regions. The study was applied over three different months of the year 2017 that each of them reflects a different activity state for the ionosphere layer. The study proves that BeiDou model is able to show the ionosphere’s day-to-day fluctuations while GPS model can’t. It can be concluded that GPS model offers better behaviour than BeiDou model in correcting range delay in low-latitude and high-latitude geographic regions under any activity state for the ionosphere. BeiDou model offers better correction accuracy than GPS model in mid-latitude under any activity state for the ionosphere.
Style APA, Harvard, Vancouver, ISO itp.
7

Pitout, F., P. T. Newell, and S. C. Buchert. "Simultaneous high- and low-latitude reconnection: ESR and DMSP observations." Annales Geophysicae 20, no. 9 (2002): 1311–20. http://dx.doi.org/10.5194/angeo-20-1311-2002.

Pełny tekst źródła
Streszczenie:
Abstract. We present EISCAT Svalbard Radar and DMSP observations of a double cusp during an interval of predominantly northward IMF on 26 November 2000. In the cusp region, the ESR dish, pointing northward, recorded sun-ward ionospheric flow at high latitudes (above 82° GL), indicating reconnection occuring in the magnetospheric lobe. Meanwhile, the same dish also recorded bursts of poleward flow, indicative of bursty reconnection at the subsolar magnetopause. Within this time interval, the DMSP F13 satellite passed in the close vicinity of the Svalbard archipelago. The particle measurement on board exhibited a double cusp structure in which two oppositely oriented ion dispersions are recorded. We interpret this set of data in terms of simultaneous merging at low- and high-latitude magnetopause. We discuss the conditions for which such simultaneous high-latitude and low-latitude reconnection can be anticipated. We also discuss the consequences of the presence of two X-lines in the dayside polar ionosphere.Key words. Magnetospheric physics (solar wind-magnetosphere interactions) – Ionosphere (polar ionosphere; plasma convection)
Style APA, Harvard, Vancouver, ISO itp.
8

Bailey, G. J., Y. Z. Su, and K. I. Oyama. "Yearly variations in the low-latitude topside ionosphere." Annales Geophysicae 18, no. 7 (2000): 789–98. http://dx.doi.org/10.1007/s00585-000-0789-0.

Pełny tekst źródła
Streszczenie:
Abstract. Observations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low-latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitudinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermosphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the effects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is different for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10°. At night, the correlation is positive.Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions; plasma temperature and density)
Style APA, Harvard, Vancouver, ISO itp.
9

Bittencourt, J. A., V. G. Pillat, P. R. Fagundes, Y. Sahai, and A. A. Pimenta. "LION: A dynamic computer model for the low-latitude ionosphere." Annales Geophysicae 25, no. 11 (2007): 2371–92. http://dx.doi.org/10.5194/angeo-25-2371-2007.

Pełny tekst źródła
Streszczenie:
Abstract. A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric) model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC) and generates color maps illustrating the typical behavior of the low-latitude ionosphere for a given longitudinal region, for different seasons, geophysical conditions and solar activity, at each instant of time, showing the time evolution of the low-latitude ionosphere, between about 20° north and south of the magnetic equator. This paper presents a detailed description of the mathematical model and illustrative computer results.
Style APA, Harvard, Vancouver, ISO itp.
10

Tiwari, Rajesh, Soumi Bhattacharya, P. K. Purohit, and A. K. Gwal. "Effect of TEC Variation on GPS Precise Point at Low Latitude." Open Atmospheric Science Journal 3, no. 1 (2009): 1–12. http://dx.doi.org/10.2174/1874282300903010001.

Pełny tekst źródła
Streszczenie:
The ionosphere is a dispersive medium of charged particles between the satellite and the user on Earth. These dispersive ionized media play a vital role in the various applications of GPS (Global Positioning Systems) because the ionosphere directly influences transionospheric radio waves propagating from the satellite to the receiver. Solar flares affect the ionization state of the ionosphere with their high intensity. Sometimes the intensity is so severe that it accelerates the rate of ionization, resulting in ionospheric storms; during the ionospheric storms the concentration of charged particles varies. Among the various phenomena in the ionosphere, TEC (Total Electron Content) is responsible for range error which produces a time delay in the radio signal. The rate of change of TEC with respect to time is abbreviated as ROT. It is one of the parameters that express the ionospheric irregularities with respect to time. This work investigates the effect of ROT fluctuation on the precise positioning of GPS receivers during low solar activity periods in the equatorial anomaly region. Good geometry and a sufficient number of locked satellites provide more accuracy within the centimeter level, but the case may be different when there are any ionospheric storms. Even a few satellite signals passing through the ionospheric irregularities can cause a significant error in positioning. Thus, it is important to understand the ionospheric irregularities observed by GPS receivers in order to correct them. The ROT (TEC/Minute) parameter is used here to study the occurrence of TEC fluctuation and its potential effect on GPS, such as a horizontal positional error or the satellite geometry of the GPS receiver. This investigation is based on the analysis of a one-year observation of a fixed GPS receiver installed at Bhopal (23.2020N, 77.4520E), India during low solar active period in 2005. The GPS receiver used here is a GISTM-based dual frequency NovAtel OEM4 GPS receiver.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii