Gotowa bibliografia na temat „Low grade heat”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low grade heat”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Low grade heat"
Gude, Veera Gnaneswar, i Nagamany Nirmalakhandan. "Desalination Using Low-Grade Heat Sources". Journal of Energy Engineering 134, nr 3 (wrzesień 2008): 95–101. http://dx.doi.org/10.1061/(asce)0733-9402(2008)134:3(95).
Pełny tekst źródłaZhang, Xiantao, Weimin Kan, Haoqing Jiang, Yanming Chen, Ting Cheng, Haifeng Jiang i Xuejiao Hu. "Capillary-driven low grade heat desalination". Desalination 410 (maj 2017): 10–18. http://dx.doi.org/10.1016/j.desal.2017.01.034.
Pełny tekst źródłaBradley, Ryan. "Batteries That Capture Low-Grade Waste Heat". Scientific American 311, nr 6 (18.11.2014): 53. http://dx.doi.org/10.1038/scientificamerican1214-53a.
Pełny tekst źródłaChrist, Alexander, Xiaolin Wang, Klaus Regenauer-Lieb i Hui Tong Chua. "Low-grade waste heat driven desalination technology". International Journal for Simulation and Multidisciplinary Design Optimization 5 (2014): A02. http://dx.doi.org/10.1051/smdo/2013007.
Pełny tekst źródłaHu, Run, Dongyan Xu i Xiaobing Luo. "Liquid Thermocells Enable Low-Grade Heat Harvesting". Matter 3, nr 5 (listopad 2020): 1400–1402. http://dx.doi.org/10.1016/j.matt.2020.10.008.
Pełny tekst źródłaZhao, Yanan, Mingliang Li, Rui Long, Zhichun Liu i Wei Liu. "Review of osmotic heat engines for low-grade heat harvesting". Desalination 527 (kwiecień 2022): 115571. http://dx.doi.org/10.1016/j.desal.2022.115571.
Pełny tekst źródłaNesreddine, Hakim, Brice Le Lostec i Adlane Bendaoud. "Power Generation from Low Grade Industrial Waste Heat". International Journal of Electrical Energy 4, nr 1 (2016): 42–47. http://dx.doi.org/10.18178/ijoee.4.1.42-47.
Pełny tekst źródłaJulaihie, K., R. Abu Bakar, B. Bhathal Singh, M. Remeli i A. Oberoi. "Low Grade Heat Power Generation using Thermoelectric Generator". IOP Conference Series: Earth and Environmental Science 268 (2.07.2019): 012134. http://dx.doi.org/10.1088/1755-1315/268/1/012134.
Pełny tekst źródłaLamp, P., C. Schweigler i F. Ziegler. "Opportunities for sorption cooling using low grade heat". Applied Thermal Engineering 18, nr 9-10 (wrzesień 1998): 755–64. http://dx.doi.org/10.1016/s1359-4311(97)00121-x.
Pełny tekst źródłaWang, Xiaolin, Alexander Christ, Klaus Regenauer-Lieb, Kamel Hooman i Hui Tong Chua. "Low grade heat driven multi-effect distillation technology". International Journal of Heat and Mass Transfer 54, nr 25-26 (grudzień 2011): 5497–503. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.041.
Pełny tekst źródłaRozprawy doktorskie na temat "Low grade heat"
Sansom, Robert. "Decarbonising low grade heat for low carbon future". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25503.
Pełny tekst źródłaGude, Veera Gnaneswar. "Desalination using low grade heat sources". access full-text online access from Digital Dissertation Consortium, 2007. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?3296129.
Pełny tekst źródłaLi, Chennan. "Innovative Desalination Systems Using Low-grade Heat". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4126.
Pełny tekst źródłaKishore, Ravi Anant. "Low-grade Thermal Energy Harvesting and Waste Heat Recovery". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/103650.
Pełny tekst źródłaPHD
Hedström, Sofia. "Thermal energy recovery of low grade waste heat in hydrogenation process". Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32335.
Pełny tekst źródłaLee, Dongwook Ph D. Massachusetts Institute of Technology. "Low-grade heat conversion into electricity by thermoelectric and electrochemical systems". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120186.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Developing cost effective technologies that convert low-grade heat into electricity is essential to meet the increasing demand for renewable energy systems. Thermoelectric and recently emergent electrochemical heat conversion devices are promising candidates for this purpose. However, current performance and cost of these devices limit their widespread application. In this thesis, we investigate design guidelines for heterostructured thermoelectric systems and electrochemical heat energy harvesters to address these challenges. Material cost and scarcity of elements in state-of-the-art thermoelectric materials are current limitations. Conductive polymers has become an attractive alternative to those materials, however they suffer from low Seebeck coefficient. Nanoscale composites of inorganic semiconductors with conductive polymers could improve low Seebeck coefficients and power factors of conductive polymers, however quantitative understandings on the mechanisms lying behind the enhancements were often missing. In our research, thin film heterostructures of a conductive polymer, PEDOT:PSS / undoped Si or undoped Ge were selected as templates for mechanistic investigations on thermoelectric performance enhancements. With the combination of experiments and simulation, it was determined that p-type PEDOT:PSS transferred holes to the interfaces of adjacent Si and Ge, and these holes could take advantage of higher hole mobility of Si and Ge. This phenomenon called modulation doping, was responsible for thermoelectric power factor enhancements in Si / PEDOT:PSS and Ge / PEDOT:PSS heterostructures. Another technology to transform low-grade heat into electricity is electrochemical heat conversion. Traditionally, the electrochemical heat conversion into electricity suffered from low conversion efficiency originating from low ionic conductivity of electrolytes, even though high thermopowers often reaching several mV/K has been an alluring advantage. Recently developed breakthrough on operating such devices under thermodynamic cycles bypassed low ionic conductivity issue, thereby improving the conversion efficiency by multiple orders of magnitude. In this study, we focused on improving efficiency by increasing thermopowers and suppressing heat capacity of the system, while maintaining the autonomy of thermodynamic cycles without need for recharging by external sources of electricity. These detailed interpretations on nanoscale composite thermoelectric systems and electrochemical heat harvester provide insights for the design of next-generation thermoelectric and electrochemical heat energy harnessing solutions.
by Dongwook Lee.
Ph. D.
Soleimanikutanaei, Soheil. "Modelling, Design, and Optimization of Membrane based Heat Exchangers for Low-grade Heat and Water Recovery". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3921.
Pełny tekst źródłaStürzebecher, Wolfgang. "Absorption cooling from low grade heat sources in the range 10kW - 100kW". Thesis, Sheffield Hallam University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442471.
Pełny tekst źródłaChen, Huijuan. "The Conversion of Low-Grade Heat into Power Using Supercritical Rankine Cycles". Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3447.
Pełny tekst źródłaMeyer, Adriaan Jacobus. "Steam jet ejector cooling powered by low grade waste or solar heat". Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2012.
Pełny tekst źródłaA small scale steam jet ejector experimental setup was designed and manufactured. This ejector setup is of an open loop configuration and the boiler can operate in the temperature range of Tb = 85 °C to 140 °C. The typical evaporator liquid temperatures range from Te = 5 °C t o 10 °C while the typical water cooled condenser presure ranges from Pc = 1 . 70 kPa t o 5. 63 kPa (Tc = 15 °C to 35 °C). The boiler is powered by by two 4kW electric elements, while a 3kW electric element simulates the cooling load in the evaporator. The electric elements are controlled by means of variacs. The function ...
Centre for Renewable and Sustainable Energy Studies
Książki na temat "Low grade heat"
olga, Arsenyeva, Kapustenko Petro i Tovazhnyanskyy Leonid, red. Compact heat exchangers for transfer intensification: Low grade heat and fouling mitigation. Boca Raton: Taylor & Francis, 2016.
Znajdź pełny tekst źródłaPenny, Terry. Low Grade Heat Power Cycles. Amer Solar Energy Society, 1985.
Znajdź pełny tekst źródłaProfiting from low-grade heat: Thermodynamic cycles for low-temperature heat sources. London: Institution of Electrical Engineers, 1994.
Znajdź pełny tekst źródłaChua, Hui Tong, i Bijan Rahimi. Low Grade Heat Driven Multi-Effect Distillation and Desalination. Elsevier, 2017.
Znajdź pełny tekst źródłaLow Grade Heat Driven Multi-Effect Distillation and Desalination. Elsevier Science & Technology Books, 2017.
Znajdź pełny tekst źródłaKlemes, Jirí Jaromír, Olga Arsenyeva, Petro Kapustenko i Leonid Tovazhnyanskyy. Compact Heat Exchangers for Energy Transfer Intensification: Low Grade Heat and Fouling Mitigation. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaKlemes, Jirí Jaromír, Olga Arsenyeva, Petro Kapustenko i Leonid Tovazhnyanskyy. Compact Heat Exchangers for Energy Transfer Intensification: Low Grade Heat and Fouling Mitigation. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaKlemes, Jirí Jaromír, Olga Arsenyeva, Petro Kapustenko i Leonid Tovazhnyanskyy. Compact Heat Exchangers for Energy Transfer Intensification: Low Grade Heat and Fouling Mitigation. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaPower Recovery from Low Grade Heat by Means of Screw Expanders. Elsevier, 2014. http://dx.doi.org/10.1016/c2013-0-23224-4.
Pełny tekst źródłaKovacevic, Ahmed, Nikola Stosic i Ian Smith. Power Recovery from Low Grade Heat by Means of Screw Expanders. Elsevier Science & Technology, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Low grade heat"
Raka, Yash D., Robert Bock, Jacob J. Lamb, Bruno G. Pollet i Odne S. Burheim. "Low-Grade Waste Heat to Hydrogen". W Micro-Optics and Energy, 85–114. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43676-6_8.
Pełny tekst źródłaBronicki, Lucien Y. "Power Generation from Low-Grade Heat Streams". W Power Stations Using Locally Available Energy Sources, 371–84. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7510-5_1026.
Pełny tekst źródłaBronicki, Lucien Yehuda. "Power Generation from Low-Grade Heat Streams". W Encyclopedia of Sustainability Science and Technology, 1–15. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-2493-6_1026-1.
Pełny tekst źródłaGarimella, Srinivas S., Donald P. Ziegler i James F. Klausner. "Low Grade Waste Heat Driven Desalination and SO2Scrubbing". W Energy Technology 2012, 159–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118365038.ch20.
Pełny tekst źródłaTaoda, Kiyomichi, Yoshifumi Ito, Seibi Uehara, Fumiaki Sato i Takeo Kumagaya. "Upgrading of Low-Grade Coals by Heat Treatment". W Drying ’85, 396–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-21830-3_53.
Pełny tekst źródłaHe, Youliang, Afsaneh Edrisy i Robert W. Triebe. "Fluoropolymer Coated Condensing Heat Exchangers for Low-Grade Waste Heat Recovery". W The Minerals, Metals & Materials Series, 107–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52333-0_10.
Pełny tekst źródłaOrtega, Eduardo, Isabel Gálvez i Leticia Martín-Cordero. "Extracellular Hsp70 and Low-Grade Inflammation- and Stress-Related Pathologies". W Heat Shock Proteins and Stress, 13–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90725-3_2.
Pełny tekst źródłaMajumder, Prasanta, Abhijit Sinha i Rajat Gupta. "Futuristic Approaches of Low-Grade Industrial Waste Heat Recovery". W Lecture Notes in Mechanical Engineering, 163–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_15.
Pełny tekst źródłaTikhomirov, Dmitry, Alexey N. Vasilyev, Dmitry Budnikov i Alexey A. Vasilyev. "Energy-Saving Device for Microclimate Maintenance with Utilization of Low-Grade Heat". W Innovative Computing Trends and Applications, 31–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03898-4_4.
Pełny tekst źródłaKharchenko, V. V., A. O. Sychov i G. N. Uzakov. "Innovative Instruments for Extraction of Low-Grade Heat from Surface Watercourses for Heating Systems with Heat Pump". W Innovative Computing Trends and Applications, 59–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03898-4_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Low grade heat"
Razavinia, N., F. Mucciardi, F. Hassani i M. Al-Khawaja. "Recycling Low Grade Waste Heat to Electricity". W 30th International Symposium on Automation and Robotics in Construction and Mining; Held in conjunction with the 23rd World Mining Congress. International Association for Automation and Robotics in Construction (IAARC), 2013. http://dx.doi.org/10.22260/isarc2013/0119.
Pełny tekst źródłaZhen Qin, Swapnil Dubey, Fook Hoong Choo, Hongwu Deng i Fei Duan. "Low-grade heat collection from a latent heat thermal energy storage unit". W 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016. http://dx.doi.org/10.1109/itherm.2016.7517690.
Pełny tekst źródłaYang, Xiaojing, Shijun You i Huan Zhang. "Simulation of Double-Stage Absorption Heat Pumps for Low Grade Waste Heat Recovery". W 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5748967.
Pełny tekst źródłaPintacsi, Daniel, i Peter Bihari. "Investigation of a low-grade industrial waste heat recovery system". W 2013 4th International Youth Conference on Energy (IYCE). IEEE, 2013. http://dx.doi.org/10.1109/iyce.2013.6604191.
Pełny tekst źródłaWang, Yongqing, i Noam Lior. "Combined Desalination and Refrigeration Systems Driven by Low-Grade Heat". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67029.
Pełny tekst źródłaLi Xinguo, Zhao Cuicui i Jia Yanmin. "Increased Low-grade Heat Source Power Generation Capacity with Ejector". W 2011 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2011. http://dx.doi.org/10.1109/icmtma.2011.384.
Pełny tekst źródłaKhromchenkov, Valery, Leonid Murashov, Ekaterina Zhigulina i Yury Yavorovsky. "Features of Low-Grade Steam Application in Heat Supply Systems". W 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2020. http://dx.doi.org/10.1109/reepe49198.2020.9059111.
Pełny tekst źródłaChen, Yang, Wimolsiri Pridasawas i Per Lundqvist. "Low-Grade Heat Source Utilization by Carbon Dioxide Transcritical Power Cycle". W ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32774.
Pełny tekst źródłaJu, Y. Sungtaek. "Theoretical Analysis of Pyroelectric Harvesting of Low-Grade Exhaust Waste Heat". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53042.
Pełny tekst źródłaJha, Vibhash, Serguei Dessiatoun, Michael Ohadi, Amir Shooshtari i Ebrahim Al-Hajri. "High Performance Micro-Grooved Evaporative Heat Transfer Surface for Low Grade Waste Heat Recovery Applications". W ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52179.
Pełny tekst źródłaRaporty organizacyjne na temat "Low grade heat"
Wang, Dexin. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat. Office of Scientific and Technical Information (OSTI), grudzień 2011. http://dx.doi.org/10.2172/1031483.
Pełny tekst źródłaWang, Dexin. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat. Office of Scientific and Technical Information (OSTI), grudzień 2011. http://dx.doi.org/10.2172/1031495.
Pełny tekst źródłaMauter, Meagan S., i David A. Dzombak. Evaluating the Techno-Economic Feasibility of Forward Osmosis Process Utilizing Low Grade Heat: Applications in Power Plant Water, Wastewater, and Reclaimed Water Treatment. Office of Scientific and Technical Information (OSTI), grudzień 2017. http://dx.doi.org/10.2172/1415992.
Pełny tekst źródłaNoble, Russell, K. Dombrowski, M. Bernau, D. Morett, A. Maxson i S. Hume. Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant. Office of Scientific and Technical Information (OSTI), czerwiec 2016. http://dx.doi.org/10.2172/1332489.
Pełny tekst źródłaKanner, Joseph, Edwin Frankel, Stella Harel i Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, styczeń 1995. http://dx.doi.org/10.32747/1995.7568767.bard.
Pełny tekst źródła