Gotowa bibliografia na temat „Low frequency electromagnetic waves”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low frequency electromagnetic waves”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Low frequency electromagnetic waves"
Guenneau, S., C. Geuzaine, A. Nicolet, A. B. Movchan i F. Zolla. "Low frequency electromagnetic waves in periodic structures". International Journal of Applied Electromagnetics and Mechanics 19, nr 1-4 (24.04.2004): 479–83. http://dx.doi.org/10.3233/jae-2004-612.
Pełny tekst źródłaTarkhanyan, Roland H., i Dimitris G. Niarchos. "Negative refraction of low-frequency electromagnetic waves". physica status solidi (RRL) - Rapid Research Letters 2, nr 5 (październik 2008): 239–41. http://dx.doi.org/10.1002/pssr.200802143.
Pełny tekst źródłaMorales, J., M. Garcia, C. Perez, J. V. Valverde, C. Lopez-Sanchez, V. Garcia-Martinez i J. L. Quesada. "Low frequency electromagnetic radiation and hearing". Journal of Laryngology & Otology 123, nr 11 (2.07.2009): 1204–11. http://dx.doi.org/10.1017/s0022215109005684.
Pełny tekst źródłaLiang, Bowen, Yong Cui, Xiao Song, Liangya Li i Chen Wang. "Multi-block electret-based mechanical antenna model for low frequency communication". International Journal of Modeling, Simulation, and Scientific Computing 10, nr 05 (październik 2019): 1950036. http://dx.doi.org/10.1142/s1793962319500363.
Pełny tekst źródłaRizzato, F. B., i A. C. L. Chian. "Nonlinear generation of the fundamental radiation in plasmas: the influence of induced ion-acoustic and Langmuir waves". Journal of Plasma Physics 48, nr 1 (sierpień 1992): 71–84. http://dx.doi.org/10.1017/s0022377800016378.
Pełny tekst źródłaYao, S. T., Q. Q. Shi, Q. G. Zong, A. W. Degeling, R. L. Guo, L. Li, J. X. Li i in. "Low-frequency Whistler Waves Modulate Electrons and Generate Higher-frequency Whistler Waves in the Solar Wind". Astrophysical Journal 923, nr 2 (1.12.2021): 216. http://dx.doi.org/10.3847/1538-4357/ac2e97.
Pełny tekst źródłaFriar, J. L., i H. R. Reiss. "Modification of nuclearβdecay by intense low-frequency electromagnetic waves". Physical Review C 36, nr 1 (1.07.1987): 283–97. http://dx.doi.org/10.1103/physrevc.36.283.
Pełny tekst źródłaLakhina, G. S., i N. L. Tsintsadze. "Large-amplitude low-frequency electromagnetic waves in pulsar magnetospheres". Astrophysics and Space Science 174, nr 1 (1990): 143–50. http://dx.doi.org/10.1007/bf00645660.
Pełny tekst źródłaChaston, C. C., J. W. Bonnell, C. A. Kletzing, G. B. Hospodarsky, J. R. Wygant i C. W. Smith. "Broadband low-frequency electromagnetic waves in the inner magnetosphere". Journal of Geophysical Research: Space Physics 120, nr 10 (październik 2015): 8603–15. http://dx.doi.org/10.1002/2015ja021690.
Pełny tekst źródłaShukla, P. K., i H. U. Rahman. "Low-frequency electromagnetic waves in nonuniform gravitating dusty magnetoplasmas". Planetary and Space Science 44, nr 5 (maj 1996): 469–72. http://dx.doi.org/10.1016/0032-0633(95)00132-8.
Pełny tekst źródłaRozprawy doktorskie na temat "Low frequency electromagnetic waves"
Liu, Zhongjian. "Investigation of low frequency electromagnetic waves for long-range lightning location". Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760951.
Pełny tekst źródłaSeguin, Sarah Ann. "Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation". Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Seguin_09007dcc80708216.pdf.
Pełny tekst źródłaVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 23, 2009) Includes bibliographical references.
Umeda, Takayuki. "Generation of low-frequency electrostatic and electromagnetic waves as nonlinear consequences of beam–plasma interactions". American Institite of Physics, 2008. http://hdl.handle.net/2237/12028.
Pełny tekst źródłaChen, Chi-Chih. "Design and applications of two low frequency guided wave electromagnetic measurement structures". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406708013.
Pełny tekst źródłaPokkuluri, Kiran S. "Effect of Admixtures, Chlorides, and Moisture on Dielectric Properties of Portland Cement Concrete in the Low Microwave Frequency Range". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/37039.
Pełny tekst źródłaMaster of Science
Bittle, James R. "2017 Full Solar Eclipse| Observations and LWPC Modeling of Very Low Frequency Electromagnetic Wave Propagation". Thesis, University of Colorado at Denver, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10843376.
Pełny tekst źródłaOn August 21, 2017 a total solar eclipse occurred over the United States commencing on the west coast moving across to the east coast providing an opportunity to observe how the rapid day-night-day transition changed the ionosphere’s D-region electron density and how very low frequency (VLF) electromagnetic wave propagation was affected. To observe the solar obscurity effects, VLF receivers were deployed in two locations: one in the path of totality in Lakeside, Nebraska and another south of the totality path in Hugo, Colorado. The locations were chosen to achieve an orthogonal geometry between the eclipse path and propagation path of U. S. Navy VLF transmitter in North Dakota, which operates at 25.2 kHz and has call sign NML. VLF amplitude and phase changes were observed in both Lakeside and Hugo during the eclipse. A negative phase change was observed at both receivers as solar obscuration progressively increased. The observed phase changes became positive as solar obscuration reduced. The opposite trend was observed for the amplitude of the transmitted signal: growth as max totality approached and decay during the shadow’s recession. The Long Wave Propagation Capability (LWPC) code developed by the US Navy was used to model the observations. LWPC is a modal solution finder for Earth-ionosphere waveguide propagation that takes into account the D-region density profile. In contrast to past efforts where a single ionosphere profile was assumed over the entire propagation path, a degree of spatial resolution along the path was sought here by solving for multiple segments of length 100-200 km along the path. LWPC modeling suggests that the effective reflection height changed from 71 km in the absence of the eclipse, to 78 km at the center of the path of totality during the total solar eclipse and is on agreement with past work.
MAROUAN, YOUSSEF. "Etat de polarisation et caracteristiques de propagation moyennes d'emissions em naturelles dans un magnetoplasma froid : application aux donnees ebf du satellite aureol-3". Orléans, 1988. http://www.theses.fr/1988ORLE2040.
Pełny tekst źródłaSuedan, Gibreel A. "High frequency beam diffraction by apertures and reflectors". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27545.
Pełny tekst źródłaApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Kipp, Robert. "Mixed potential integral equation solutions for layered media structures : high frequency interconnects and frequency selective surfaces /". Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5974.
Pełny tekst źródłaLachin, Anoosh. "Low frequency waves in the solar system". Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267713.
Pełny tekst źródłaKsiążki na temat "Low frequency electromagnetic waves"
Hitchcock, R. Timothy. Extremely low frequency (ELF) electric and magnetic fields \. Fairfax, Va: AIHA, 1995.
Znajdź pełny tekst źródłaC, Ferguson Dale, i United States. National Aeronautics and Space Administration., red. Low frequency waves in the plasma environment around the shuttle. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaLow frequency electromagnetic design. New York: M. Dekker, 1985.
Znajdź pełny tekst źródłaHealth and low-frequency electromagnetic fields. New Haven, CT: Yale University Press, 1994.
Znajdź pełny tekst źródłaIvo, Doležel, i Karban Pavel 1979-, red. Integral methods in low-frequency electromagnetics. Hoboken, N.J: Wiley, 2009.
Znajdź pełny tekst źródłaKeiling, Andreas, Dong-Hun Lee i Valery Nakariakov, red. Low-Frequency Waves in Space Plasmas. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119055006.
Pełny tekst źródła1943-, Varadan V. K., i Varadan V. V. 1948-, red. Low and high frequency asymptotics. Amsterdam: North-Holland, 1986.
Znajdź pełny tekst źródłaSurkov, Vadim, i Masashi Hayakawa. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54367-1.
Pełny tekst źródłaW, Hafemeister David, red. Biological effects of low-frequency electromagnetic fields. College Park, MD: American Association of Physics Teachers, 1998.
Znajdź pełny tekst źródłaauthor, Hayakawa Masashi, red. Ultra and extremely low frequency electromagnetic fields. Tokyo: Springer, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Low frequency electromagnetic waves"
Chew, Weng Cho, Mei Song Tong i Bin Hu. "Low-Frequency Problems in Integral Equations". W Integral Equation Methods for Electromagnetic and Elastic Waves, 107–34. Cham: Springer International Publishing, 2009. http://dx.doi.org/10.1007/978-3-031-01707-0_5.
Pełny tekst źródłaYakubov, Vladimir, i Dmitry Sukhanov. "Applications of Low‑Frequency Magnetic Tomography". W Electromagnetic and Acoustic Wave Tomography, 313–22. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9780429488276-13.
Pełny tekst źródłaYakubov, Vladimir, Sergey Shipilov, Dmitry Sukhanov i Andrey Klokov. "Low-Frequency Magnetic and Electrostatic Tomography". W Electromagnetic and Acoustic Wave Tomography, 79–87. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9780429488276-4.
Pełny tekst źródłaSarkar, Tapan K., Jinhwan Koh i Magdalena Salazar Palma. "Generation of Wideband Electromagnetic Responses Using Early-Time and Low-Frequency Data". W Novel Technologies for Microwave and Millimeter — Wave Applications, 411–24. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4156-8_19.
Pełny tekst źródłaSimões, Fernando, Robert Pfaff, Jean-Jacques Berthelier i Jeffrey Klenzing. "A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms". W Dynamic Coupling Between Earth’s Atmospheric and Plasma Environments, 551–93. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-5677-3_20.
Pełny tekst źródłaChaudhuri, S. K. "Electromagnetic Low Frequency Imaging". W Inverse Methods in Electromagnetic Imaging, 997–1007. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5271-3_17.
Pełny tekst źródłaChaudhuri, S. K. "Electromagnetic Low Frequency Imaging". W Inverse Methods in Electromagnetic Imaging, 997–1007. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9444-3_56.
Pełny tekst źródłaCui, Jianzhong, Haitao Zhang, Lei Li, Yubo Zuo i Hiromi Nagaumi. "Electromagnetic Stirring and Low-Frequency Electromagnetic Vibration". W Solidification Processing of Metallic Alloys Under External Fields, 119–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94842-3_4.
Pełny tekst źródłaTodorov, Nencho G. "Magnetotherapy with Low-Frequency Electromagnetic Field". W Electromagnetic Fields and Biomembranes, 129–33. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9507-6_14.
Pełny tekst źródłaFaessler, A., R. Nojarov i Z. Bochnacki. "Low-Frequency Neutron-Proton Vibrations". W Weak and Electromagnetic Interactions in Nuclei, 339–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71689-8_71.
Pełny tekst źródłaStreszczenia konferencji na temat "Low frequency electromagnetic waves"
Zakharchenko, Vladimir D. "Modelling of Low-altitude Altimeters Using Additional Frequency Modulation". W 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2021. http://dx.doi.org/10.1109/rsemw52378.2021.9494124.
Pełny tekst źródłaElizarov, Sergey V., i Andrey P. Smirnov. "Methods for Reflectivity Measurements of Objects and Materials on the Low Frequency". W 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2021. http://dx.doi.org/10.1109/rsemw52378.2021.9494114.
Pełny tekst źródłaSkrylev, A. V., A. E. Panich i G. S. Radchenko. "Quazistatic piezoelectric-magnet-metal symmetric device for effective measurement of low-frequency magnetic field". W 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103682.
Pełny tekst źródłaLin, B., i A. B. Cerato. "Study of Expansive Soil Behavior Using Low to Medium Frequency Electromagnetic Waves". W GeoFlorida 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41095(365)69.
Pełny tekst źródłaEklund, Gunnar, Tobias Bergsten, Valter Tarasso i Karl-Erik Rydler. "Determination of transition error corrections for low frequency stepwise-approximated Josephson sine waves". W 2010 Conference on Precision Electromagnetic Measurements (CPEM 2010). IEEE, 2010. http://dx.doi.org/10.1109/cpem.2010.5545119.
Pełny tekst źródłaYang, Min, Guancong Ma, Songwen Xiao, Zhiyu Yang i Ping Sheng. "Hybrid resonance and the total absorption of low frequency acoustic waves". W 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2015. http://dx.doi.org/10.1109/metamaterials.2015.7342498.
Pełny tekst źródłaKorshunova, E. N., A. N. Sivov i A. D. Shatrov. "Low-frequency resonator antenna converting linear polarized waves into circular". W Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop. DIPED - 99. IEEE, 1999. http://dx.doi.org/10.1109/diped.1999.822153.
Pełny tekst źródłaJames, H. G., i A. W. Yau. "Observations of Electromagnetic Waves at Very Low Frequency in the Near Topside Ionosphere". W 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2019. http://dx.doi.org/10.1109/iceaa.2019.8879120.
Pełny tekst źródłaWang, Jinhong, Lei Sang i Bin Li. "The Detection of Buried Objects in Shallow Sea with Low Frequency Electromagnetic Waves". W 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO). IEEE, 2018. http://dx.doi.org/10.1109/oceanskobe.2018.8559390.
Pełny tekst źródłaShukla, Padma Kant. "New generalized dispersion relation for low-frequency electromagnetic waves in Hall-magnetohydrodynamic dusty plasmas". W NEW VISTAS IN DUSTY PLASMAS: Fourth International Conference on the Physics of Dusty Plasmas. AIP, 2005. http://dx.doi.org/10.1063/1.2134627.
Pełny tekst źródłaRaporty organizacyjne na temat "Low frequency electromagnetic waves"
Sweeney, J. Low Frequency Electromagnetic Pulse and Explosions. Office of Scientific and Technical Information (OSTI), luty 2011. http://dx.doi.org/10.2172/1030215.
Pełny tekst źródłaCasey, K., i H. Pao. Low-Frequency Electromagnetic Backscatter from Buried Tunnels. Office of Scientific and Technical Information (OSTI), czerwiec 2006. http://dx.doi.org/10.2172/891712.
Pełny tekst źródłaAldrich, T. (Low frequency electromagnetic fields and public health). Office of Scientific and Technical Information (OSTI), maj 1988. http://dx.doi.org/10.2172/6866726.
Pełny tekst źródłaUnknown, Author. L51630 In-Line Detection and Sizing of Stress Corrosion Cracks Using EMAT Ultrasonics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 1990. http://dx.doi.org/10.55274/r0010616.
Pełny tekst źródłaFord, S., i J. Sweeney. Low-frequency Electromagnetic Detection Limits of Underground Nuclear Explosions. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1670539.
Pełny tekst źródłaShubitidze, Fridon. A Low Frequency Electromagnetic Sensor for Underwater Geo-Location. Fort Belvoir, VA: Defense Technical Information Center, maj 2011. http://dx.doi.org/10.21236/ada548971.
Pełny tekst źródłaMayhall, D. A Preliminary Low-Frequency Electromagnetic Analysis of a Flux Concentrator. Office of Scientific and Technical Information (OSTI), czerwiec 2006. http://dx.doi.org/10.2172/900087.
Pełny tekst źródłaGalperin, Yu M., D. A. Parshin i V. N. Solovyev. Nonlinear Low-Temperature Absorption of Ultrasound and Electromagnetic Waves in Glasses. [б. в.], sierpień 1989. http://dx.doi.org/10.31812/0564/1243.
Pełny tekst źródłaSharma, Mukul, Javid Shiriyev, Peng Zhang, Yaniv Brick, Dave Glowka, Jeff Gabelmann i Robert Houston. Fracture Diagnostics Using Low Frequency Electromagnetic Induction and Electrically Conductive Proppants. Office of Scientific and Technical Information (OSTI), grudzień 2018. http://dx.doi.org/10.2172/1489696.
Pełny tekst źródłaHewett, D. W., D. Bateson, M. Gibbons, M. Lambert, L. Tung i G. Rodrique. Coupled models in low-frequency electromagnetic simulation LDRD Final Report 94-ERI-004. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/328157.
Pełny tekst źródła