Artykuły w czasopismach na temat „Low energy electron diffraction”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Low energy electron diffraction.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Low energy electron diffraction”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Silin, A. P. "Low-energy electron diffraction". Soviet Physics Uspekhi 31, nr 4 (30.04.1988): 381. http://dx.doi.org/10.1070/pu1988v031n04abeh005759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Rous, P. J. "Tensor low-energy electron diffraction". Journal of Physics: Condensed Matter 6, nr 40 (3.10.1994): 8103–32. http://dx.doi.org/10.1088/0953-8984/6/40/004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Heinz, K., A. Seubert i D. K. Saldin. "Holographic low-energy electron diffraction". Journal of Physics: Condensed Matter 13, nr 47 (12.11.2001): 10647–63. http://dx.doi.org/10.1088/0953-8984/13/47/308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Starke, U., J. B. Pendry i K. Heinz. "Diffuse low-energy electron diffraction". Progress in Surface Science 52, nr 2 (czerwiec 1996): 53–124. http://dx.doi.org/10.1016/0079-6816(96)00007-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ichinokawa, T., Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa i J. Kirchner. "Low energy scanning electron microscopy combined with low energy electron diffraction". Surface Science Letters 176, nr 1-2 (październik 1986): A556. http://dx.doi.org/10.1016/0167-2584(86)91061-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ichinokawa, T., Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa i J. Kirschner. "Low energy scanning electron microscopy combined with low energy electron diffraction". Surface Science 176, nr 1-2 (październik 1986): 397–414. http://dx.doi.org/10.1016/0039-6028(86)90184-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lynch, D. F., i A. E. Smith. "Electron diffraction phenomena for very low energy electrons". Acta Crystallographica Section A Foundations of Crystallography 43, a1 (12.08.1987): C246. http://dx.doi.org/10.1107/s0108767387078887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Claus, H., A. Büssenschütt i M. Henzler. "Low‐energy electron diffraction with energy resolution". Review of Scientific Instruments 63, nr 4 (kwiecień 1992): 2195–99. http://dx.doi.org/10.1063/1.1143138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Qian, W., i J. C. H. Spence. "Theory of transmission low-energy electron diffraction". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1.08.1993): 696–97. http://dx.doi.org/10.1017/s0424820100149313.

Pełny tekst źródła
Streszczenie:
Interpretation of the images from a point source electron microscope requires a detailed analysis of transmission low energy electron diffraction. Here we present a general approach for solutions to the mixed Bragg-Laue case in transmission LEED (100-1000eV), based on the dynamical diffraction theory of Bethe. However, the validity of the dynamical diffraction theory to low energy electrons can be justified by its connection to the band theory for low energy crystal electrons.Assume that the incident beam forms a plane wave and the crystal is a thin slab. According to Bethe, the total electron wavefield within crystal can be written as a linear combination of Bloch waves (equation 1). The Bloch wave excitation coefficients b(j) can be determined by matching the boundary conditions, the wave amplitudes Cg(j) and the wave vectors k(j) for each Bloch wave can be obtained by solving the time independent Schrodinger equations (equation 2).
Style APA, Harvard, Vancouver, ISO itp.
10

Nibbering, E. T. J. "Low-energy electron diffraction at ultrafast speeds". Science 345, nr 6193 (10.07.2014): 137–38. http://dx.doi.org/10.1126/science.1256199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Stachulec, K. "Spin polarized low energy electron diffraction (SPLEED)". Physica B+C 142, nr 3 (grudzień 1986): 332–47. http://dx.doi.org/10.1016/0378-4363(86)90028-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Diehl, R. D., J. Ledieu, N. Ferralis, A. W. Szmodis i R. McGrath. "Low-energy electron diffraction from quasicrystal surfaces". Journal of Physics: Condensed Matter 15, nr 3 (13.01.2003): R63—R81. http://dx.doi.org/10.1088/0953-8984/15/3/201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Over, H., M. Gierer, H. Bludau, G. Ertl i S. Y. Tong. "Fingerprinting technique in low-energy electron diffraction". Surface Science 314, nr 2 (lipiec 1994): 243–68. http://dx.doi.org/10.1016/0039-6028(94)90010-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Jia, J. F., R. G. Zhao i W. S. Yang. "Quasikinematic low-energy electron-diffraction surface crystallography". Physical Review B 48, nr 24 (15.12.1993): 18101–8. http://dx.doi.org/10.1103/physrevb.48.18101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Stachulec, K., i A. Stachulec. "Temperature Dependence of Low Energy Electron Diffraction". physica status solidi (b) 141, nr 2 (1.06.1987): K89—K92. http://dx.doi.org/10.1002/pssb.2221410228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Müller, Bert, i Martin Henzler. "Comparison of reflection high-energy electron diffraction and low-energy electron diffraction using high-resolution instrumentation". Surface Science 389, nr 1-3 (listopad 1997): 338–48. http://dx.doi.org/10.1016/s0039-6028(97)00447-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Tromp, Ruud M. "Low-Energy Electron Microscopy". MRS Bulletin 19, nr 6 (czerwiec 1994): 44–46. http://dx.doi.org/10.1557/s0883769400036757.

Pełny tekst źródła
Streszczenie:
For surface science, the 1980s were the decade in which the microscopes arrived. The scanning tunneling microscope (STM) was invented in 1982. Ultrahigh vacuum transmission electron microscopy (UHVTEM) played a key role in resolving the structure of the elusive Si(111)-7 × 7 surface. Scanning electron microscopy (SEM) as well as reflection electron microscopy (REM) were applied to the study of growth and islanding. And low-energy electron microscopy (LEEM), invented some 20 years earlier, made its appearance with the work of Telieps and Bauer.LEEM and TEM have many things in common. Unlike STM and SEM, they are direct imaging techniques, using magnifying lenses. Both use an aperture to select a particular diffracted beam, which determines the nature of the contrast. If the direct beam is selected (no parallel momentum transfer), a bright field image is formed, and contrast arises primarily from differences in the scattering factor. A dark field image is formed with any other beam in the diffraction pattern, allowing contrast due to differences in symmetry. In LEEM, phase contrast is the third important mechanism by which surface and interface features such as atomic steps and dislocations may be imaged. One major difference between TEM and LEEM is the electron energy: 100 keV and above in TEM, 100 eV and below in LEEM. In LEEM, the imaging electrons are reflected from the sample surface, unlike TEM where the electrons zip right through the sample, encountering top surface, bulk, and bottom surface. STM and TEM are capable of ~2 Å resolution, while LEEM and SEM can observe surface features (including atomic steps) with -100 Å resolution.
Style APA, Harvard, Vancouver, ISO itp.
18

Cao, Yijian, i Edward H. Conrad. "High q‐resolution electron gun for low energy electron diffraction". Review of Scientific Instruments 60, nr 8 (sierpień 1989): 2642–45. http://dx.doi.org/10.1063/1.1140686.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Sawler, J., i D. Venus. "Electron polarimeter based on spin‐polarized low‐energy electron diffraction". Review of Scientific Instruments 62, nr 10 (październik 1991): 2409–18. http://dx.doi.org/10.1063/1.1142256.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Burch, Kathryn D., J. L. Huang i Robert G. Greenler. "Optical simulation of low‐energy electron diffraction patterns". American Journal of Physics 53, nr 3 (marzec 1985): 237–42. http://dx.doi.org/10.1119/1.14130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Wander, A., J. B. Pendry i M. A. Van Hove. "Linear approximation to dynamical low-energy electron diffraction". Physical Review B 46, nr 15 (15.10.1992): 9897–99. http://dx.doi.org/10.1103/physrevb.46.9897.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Saldin, D. K., J. B. Pendry, M. A. Van Hove i G. A. Somorjai. "Interpretation of diffuse low-energy electron diffraction intensities". Physical Review B 31, nr 2 (15.01.1985): 1216–18. http://dx.doi.org/10.1103/physrevb.31.1216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Namba, Yoshikatsu, i Toshio Mōri. "Two‐grid Auger–low energy electron diffraction system". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, nr 4 (lipiec 1986): 1884–87. http://dx.doi.org/10.1116/1.573740.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Hwang, Robert Q., Ellen D. Williams i Robert L. Park. "A high‐resolution low‐energy electron diffraction instrument". Review of Scientific Instruments 60, nr 9 (wrzesień 1989): 2945–48. http://dx.doi.org/10.1063/1.1140632.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kim, S. K., F. Jona i J. A. Strozier. "Correction of experimental low-energy electron-diffraction intensities". Physical Review B 51, nr 19 (15.05.1995): 13837–40. http://dx.doi.org/10.1103/physrevb.51.13837.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Nazarov, V. U., i S. Nishigaki. "Inelastic low energy electron diffraction at metal surfaces". Surface Science 482-485 (czerwiec 2001): 640–47. http://dx.doi.org/10.1016/s0039-6028(01)00784-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Delong, A., i V. Kolařík. "Selected area low energy electron diffraction and microscopy". Ultramicroscopy 17, nr 1 (1985): 67–72. http://dx.doi.org/10.1016/0304-3991(85)90178-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Galiy, P., T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber i I. Yarovets’. "Scanning Tunneling Microscopy/Spectroscopy and Low-Energy Electron Diffraction Investigations of GaTe Layered Crystal Cleavage Surface". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 37, nr 6 (17.08.2016): 789–801. http://dx.doi.org/10.15407/mfint.37.06.0789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Tromp, R. M., M. Mankos, M. C. Reuter, A. W. Ellis i M. Copel. "A New Low Energy Electron Microscope". Surface Review and Letters 05, nr 06 (grudzień 1998): 1189–97. http://dx.doi.org/10.1142/s0218625x98001523.

Pełny tekst źródła
Streszczenie:
Low energy electron microscopy (LEEM) has developed into one of the premier techniques for in situ studies of surface dynamical processes, such as epitaxial growth, phase transitions, chemisorption and strain relaxation phenomena. Over the last three years we have designed and constructed a new LEEM instrument, aimed at improved resolution, improved diffraction capabilities and greater ease of operation compared to present instruments.
Style APA, Harvard, Vancouver, ISO itp.
30

Vuorinen, J., K. Pussi, R. D. Diehl i M. Lindroos. "Correlation of electron self-energy with geometric structure in low-energy electron diffraction". Journal of Physics: Condensed Matter 24, nr 1 (29.11.2011): 015003. http://dx.doi.org/10.1088/0953-8984/24/1/015003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Omori, Shinji, i Yoshimasa Nihei. "Photoelectron diffraction intensity calculation by using tensor low-energy electron diffraction theory". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, nr 4 (lipiec 1999): 1621–25. http://dx.doi.org/10.1116/1.581861.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

TONG, S. Y., T. P. CHU, HUASHENG WU i H. HUANG. "LOW-ENERGY ELECTRON HOLOGRAMS: PROPERTIES AND METHOD OF INVERSION". Surface Review and Letters 04, nr 03 (czerwiec 1997): 459–67. http://dx.doi.org/10.1142/s0218625x97000444.

Pełny tekst źródła
Streszczenie:
We examine the differences between low-energy electron-diffraction patterns (holograms) and optical holograms. We show that electron-diffraction patterns in solids are not analogous to optical holograms because of strong dynamical factors. We also show that low-energy electron holograms can be inverted by a large-wave-number small-angle integral transformation. The grid sizes in wave number and angular spaces used in the transformation are derived.
Style APA, Harvard, Vancouver, ISO itp.
33

Tear, S. P. "Surface Crystallography: An Introduction to Low Energy Electron Diffraction". Physics Bulletin 36, nr 12 (grudzień 1985): 506. http://dx.doi.org/10.1088/0031-9112/36/12/026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Clarke, L. J., i Paul M. Marcus. "Surface Crystallography: An Introduction to Low Energy Electron Diffraction". Physics Today 40, nr 4 (kwiecień 1987): 83–84. http://dx.doi.org/10.1063/1.2819989.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Lee, Suk Kyoung, Yun Fei Lin, Lu Yan i Wen Li. "Laser-Induced Low Energy Electron Diffraction in Aligned Molecules". Journal of Physical Chemistry A 116, nr 8 (15.02.2012): 1950–55. http://dx.doi.org/10.1021/jp210798c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Eden, V. L., i S. C. Fain. "Ethylene on graphite: A low-energy electron-diffraction study". Physical Review B 43, nr 13 (1.05.1991): 10697–705. http://dx.doi.org/10.1103/physrevb.43.10697.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lander, J. J., i J. Morrison. "LOW ENERGY ELECTRON DIFFRACTION STUDY OF SILICON SURFACE STRUCTURES". Annals of the New York Academy of Sciences 101, nr 3 (22.12.2006): 605–26. http://dx.doi.org/10.1111/j.1749-6632.1963.tb54918.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Farnsworth, H. E. "LOW ENERGY ELECTRON DIFFRACTION FROM A CLEAVED GERMANIUM SURFACE*". Annals of the New York Academy of Sciences 101, nr 3 (22.12.2006): 658–66. http://dx.doi.org/10.1111/j.1749-6632.1963.tb54922.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wander, A. "A new modular low energy electron diffraction package — DL_LEED". Computer Physics Communications 137, nr 1 (czerwiec 2001): 4–11. http://dx.doi.org/10.1016/s0010-4655(01)00168-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Dorel, S., F. Pesty i P. Garoche. "Oscillating low-energy electron diffraction for studying nanostructured surfaces". Surface Science 446, nr 3 (luty 2000): 294–300. http://dx.doi.org/10.1016/s0039-6028(99)01158-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Li, Wei, Dong Zhao i D. Haneman. "Low-energy electron diffraction from heated porous silicon surfaces". Surface Science 448, nr 1 (marzec 2000): 40–48. http://dx.doi.org/10.1016/s0039-6028(99)01190-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ford, Wayne K. "Low-energy electron diffraction calculations using a parallel supercomputer". Surface Science Letters 292, nr 3 (sierpień 1993): A614. http://dx.doi.org/10.1016/0167-2584(93)90892-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ford, Wayne K. "Low-energy electron diffraction calculations using a parallel supercomputer". Surface Science 292, nr 3 (sierpień 1993): 342–48. http://dx.doi.org/10.1016/0039-6028(93)90339-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Materer, Nicholas F. "Layer stacking implementation of tensor low energy electron diffraction". Surface Science 491, nr 1-2 (wrzesień 2001): 131–39. http://dx.doi.org/10.1016/s0039-6028(01)01383-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wedler, Harald, i Klaus Heinz. "Information on Surface Structure by Low Energy Electron Diffraction". Vakuum in Forschung und Praxis 7, nr 2 (1995): 107–14. http://dx.doi.org/10.1002/vipr.19950070205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Mizuno, Seigi, F. Rahman i Masayuki Iwanaga. "Low-Energy Electron Diffraction Patterns Using Field-Emitted Electrons from Tungsten Tips". Japanese Journal of Applied Physics 45, No. 6 (3.02.2006): L178—L179. http://dx.doi.org/10.1143/jjap.45.l178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Bauer, E., A. Pavlovska i I. S. T. Tsong. "In Situ Nitride Growth Studies by Low Energy Electron Microscopy (LEEM) and Low Energy Electron Diffraction (LEED)". Microscopy and Microanalysis 3, S2 (sierpień 1997): 611–12. http://dx.doi.org/10.1017/s1431927600009946.

Pełny tekst źródła
Streszczenie:
Nitride films play an increasing role in modern electronics, for example silicon nitride as insulating layer in Si-based devices or GaN in blue light emitting diodes and lasers. For this reason they have been the subject of many ex situ electron microscopic studies. A much deeper understanding of the growth of these important materials can be obtained by in situ studies. Although these could be done by SEM, LEEM combined with LEED is much better suited because of its excellent surface sensitivity and diffraction contrast. We have in the past studied the high temperture nitridation of Si(l11) by ammonia (NH3)and the growth of GaN and A1N films on Si(l11) and 6H-SiC(0001) by depositing Ga and Al in the presence of NH3 and will report some of the results of this work for comparison with more recent work using atomic nitrogen instead of NH3.
Style APA, Harvard, Vancouver, ISO itp.
48

Wu, Jinsong, i John C. H. Spence. "Low-Dose, Low-Temperature Convergent-Beam Electron Diffraction and Multiwavelength Analysis of Hydrocarbon Films by Electron Diffraction". Microscopy and Microanalysis 9, nr 5 (16.09.2003): 428–41. http://dx.doi.org/10.1017/s1431927603030368.

Pełny tekst źródła
Streszczenie:
Aromatic hydrocarbon (perylene, coronene) and tetracontane films are shown to produce useful convergent-beam electron diffraction (CBED) patterns under low-dose and low-temperature conditions. These were obtained using a Zeiss LEO-921 electron microscope with an omega energy filter at liquid helium and nitrogen temperatures. The usefulness of patterns showing CBED disks of constant intensity (“blank disks,” indicating kinematic scattering) for structure analysis is investigated, with the aim of avoiding film-bending artifacts. Using CBED patterns from thicker areas, sample thickness was experimentally determined using either two-beam or three-beam patterns. Koehler mode illumination (a new form of SAD pattern offering smaller areas) was also used, and the possibility of obtaining structure factor moduli using the kinematic and two-beam approximations was investigated by comparing measured diffraction intensities with experimental ones for these known structures. The commonly used approximation |F| ∼ Ig (intended to account for bending) was found to be a worse approximation than the two-beam approximation with well-defined excitation error for these microdiffraction experiments. A new multiwavelength method of retrieving structure factor moduli and thickness from microdiffraction patterns using two-beam theory is demonstrated for tetracontane.
Style APA, Harvard, Vancouver, ISO itp.
49

Rundgren, J. "Electron inelastic mean free path, electron attenuation length, and low-energy electron-diffraction theory". Physical Review B 59, nr 7 (15.02.1999): 5106–14. http://dx.doi.org/10.1103/physrevb.59.5106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Usami, S., H. Nakai, T. Yaguchi, Y. Kumashiro i A. Fujimori. "Auger electron spectroscopy–electron energy‐loss spectroscopy–low‐energy electron diffraction study of a V6C5(100) surface". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, nr 4 (lipiec 1987): 985–88. http://dx.doi.org/10.1116/1.574307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii