Gotowa bibliografia na temat „Low-density”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Low-density”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Low-density"

1

Sangawar, Vijaya S., i Manisha C. Golchha. "Optical Properties of ZnO/Low Density Polyethylene Nanocomposites". International Journal of Scientific Research 2, nr 7 (1.06.2012): 490–92. http://dx.doi.org/10.15373/22778179/july2013/169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Safronov, R. I. "Manufacture of sapphire ribbons with low dislocation density". Functional materials 23, nr 1 (15.03.2016): 88–91. http://dx.doi.org/10.15407/fm23.01.088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ilg, Andrea D., Craig J. Price i Stephen A. Miller. "Linear Low-Density Polyoxymethylene versus Linear Low-Density Polyethylene". Macromolecules 40, nr 22 (październik 2007): 7739–41. http://dx.doi.org/10.1021/ma702066y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Acierno, D., D. Curto, F. P. La Mantia i A. Valenza. "Flow properties of low density/linear low density polyethylenes". Polymer Engineering and Science 26, nr 1 (styczeń 1986): 28–33. http://dx.doi.org/10.1002/pen.760260107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

La Mantia, F. P., A. Valenza i D. Acierno. "Elongational behavior of low density/linear low density polyethylenes". Polymer Engineering and Science 28, nr 2 (styczeń 1988): 90–95. http://dx.doi.org/10.1002/pen.760280205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gliwicz, Z. Maciej, Piotr Dawidowicz i Piotr Maszczyk. "Low-density anti-predation refuge in Daphnia and Chaoborus?" Archiv für Hydrobiologie 167, nr 1-4 (5.10.2006): 101–14. http://dx.doi.org/10.1127/0003-9136/2006/0167-0101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Slyper, Arnold H. "Low-Density Lipoprotein Density and Atherosclerosis". JAMA 272, nr 4 (27.07.1994): 305. http://dx.doi.org/10.1001/jama.1994.03520040067042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Suh, Dong-Woo, i Nack J. Kim. "Low-density steels". Scripta Materialia 68, nr 6 (marzec 2013): 337–38. http://dx.doi.org/10.1016/j.scriptamat.2012.11.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rana, Radhakanta. "Low-Density Steels". JOM 66, nr 9 (29.08.2014): 1730–33. http://dx.doi.org/10.1007/s11837-014-1137-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Maeda, Shuichi. "Miscibility of Linear Low-Density Polyethylene/Low-Density Polyethylene Blends". Nihon Reoroji Gakkaishi 49, nr 3 (15.06.2021): 227–33. http://dx.doi.org/10.1678/rheology.49.227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Low-density"

1

Ucar, Egemen. "Ternary Nanocomposites Of High Density, Linear Low Density And Low Density Polyethylenes". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608446/index.pdf.

Pełny tekst źródła
Streszczenie:
In this study, the effects of organoclay loading, compatibilizer loading and polyethylene type on the morphology, rheology, thermal properties and mechanical properties of polyethylene/compatibilizer/organoclay nanocomposites were investigated. As compatibilizer, terpolymer of ethylene-methacrylate-glycidyl methacrylate (Lotader®
AX8900), as organoclay Cloisite®
15A were used. All samples were prepared by a co-rotating twin screw extruder, followed by injection molding. Considering ternary nanocomposites, highest impact strength results were obtained with 10% compatibilizer plus 2% organoclay
highest yield stress, elastic modulus, flexural strength, flexural modulus were obtained with 5% compatibilizer plus 4-6% organoclay. DSC data indicated that addition of organoclay and compatibilizer did not change the melting point remarkably
on the other hand it affected the crystallinity. The organoclay used had no nucleation effect on polyethylene, and the compatibilizer decreased the crystallinity of the matrix. X-ray diffraction showed that in all ternary nanocomposites and in binary nanocomposite of high density polyethylene with organoclay, layer separation associated with intercalation of the clay structure occurred,. The highest increase of interlayer gallery spacing was obtained with 10% compatibilizer plus 2% organoclay, which were 25%, 28% and 27% for HDPE, LLDPE and LDPE matrices respectively.
Style APA, Harvard, Vancouver, ISO itp.
2

Cappello, Christian. "Ozoniertes Low Density-Lipoprotien (OzLDL)". kostenfrei, 2009. http://mediatum2.ub.tum.de/node?id=679935.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Guo, Feng. "Low density parity check coding". Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419159.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Oliver, Matthew. "Density, temperature and magnetic field measurements in low density plasmas". Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:df217453-1e10-4684-beb7-83c1bcecf285.

Pełny tekst źródła
Streszczenie:
Low density plasmas are found throughout the known universe. Therefore, accurate diagnostic methods have implications for our understanding of a variety of topics, ranging from star formation to the semi conductor industry. Low density plasmas are ubiquitous in the material processing industry. However, measurements of the electron temperature and density, two of the most fundamental plasma properties, are not straightforward. In the laboratory, we create a low density, radio frequency, helium plasma with a bi-Maxwellian electron distribution, similar to those found in the semiconductor processing industry. We use optical emission spectroscopy to perform a non invasive measurement of the plasma conditions. We compare this to measurements obtained using a Langmuir probe, a commonly used invasive diagnostic. The optical emission spectroscopy is found to be insensitive to electron density but good agreement is found between the two techniques for values of the temperature of the hot electron component of the bi-Maxwellian. Plasmas created with high-intensity lasers are able to recreate conditions similar to those found during astrophysical events. This development has led to these condi- tions being explored in laboratories around the world. An experiment was performed at the Rutherford Appleton Laboratory in Didcot, UK, investigating the properties of supersonic turbulent jets. For the first time a magneto-optic probe was used to measure the magnetic field in a low-density supersonic turbulent plasma. The results were compared to measurements taken using a magnetic-induction probe. Good agreement was found between measurements of the magnetic field strength within the plasma; however, the magnetic power spectra differ. We attribute this to the dif- ference in integration length between the two measurements. Statistical properties of the velocity field are inferred from the magnetic field measurements, which compare favourably to astrophysical observations and hydrodynamic simulations.
Style APA, Harvard, Vancouver, ISO itp.
5

Isik, Coskunses Fatma. "Ternary Nanocomposites Of Low Density,high Density And Linear Low Density Polyethylenes With The Compatibilizers E-ma_gma And E-ba-mah". Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613294/index.pdf.

Pełny tekst źródła
Streszczenie:
The effects of polyethylene, (PE), type, compatibilizer type and organoclay type on the morphology, rheological, thermal, and mechanical properties of ternary low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE), matrix nanocomposites were investigated in this study. Ethylene &ndash
Methyl acrylate &ndash
Glycidyl methacrylate terpolymer (E-MAGMA) and Ethylene &ndash
Butyl acrylate- Maleic anhydrate terpolymer (E-BA-MAH) were used as the compatibilizers. The organoclays selected for the study were Cloisite 30B and Nanofil 8. Nanocomposites were prepared by means of melt blending via co-rotating twin screw extrusion process. Extruded samples were injection molded to be used for material characterization tests. Optimum amounts of ingredients of ternary nanocomposites were determined based on to the mechanical test results of binary blends of PE/Compatibilizer and binary nanocomposites of PE/Organoclay. Based on the tensile test results, the optimum contents of compatibilizer and organoclay were determined as 5 wt % and 2 wt %, respectively. XRD and TEM analysis results indicated that intercalated and partially exfoliated structures were obtained in the ternary nanocomposites. In these nanocomposites E-MA-GMA compatibilizer produced higher d-spacing in comparison to E-BA-MAH, owing to its higher reactivity. HDPE exhibited the highest basal spacing among all the nanocomposite types with E-MA-GMA/30B system. Considering the polymer type, better dispersion was achieved in the order of LDPE<
LLDPE<
HDPE, owing to the linearity of HDPE, and short branches of LLDPE. MFI values were decreased by the addition of compatibilizer and organoclay to the matrix polymers. Compatibilizers imparted the effect of sticking the polymer blends on the walls of test apparatus, and addition of organoclay showed the filler effect and increased the viscosity. DSC analysis showed that addition of compatibilizer or organoclay did not significantly affect the melting behavior of the nanocomposites. Degree of crystallinity of polyethylene matrices decreased with organoclay addition. Nanoscale organoclays prevented the alignment of polyethylene chains and reduced the degree of crystallinity. Ternary nanocomposites had improved tensile properties. Effect of compatibilizer on property enhancement was observed in mechanical results. Tensile strength and Young&rsquo
s modulus of nanocomposites increased significantly in the presence of compatibilizers.
Style APA, Harvard, Vancouver, ISO itp.
6

Pirou, Florent. "Low-density Parity-Check decoding Algorithms". Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2160.

Pełny tekst źródła
Streszczenie:

Recently, low-density parity-check (LDPC) codes have attracted much attention because of their excellent error correcting performance and highly parallelizable decoding scheme. However, the effective VLSI implementation of and LDPC decoder remains a big challenge and is a crucial issue in determining how well we can exploit the benefits of the LDPC codes in the real applications. In this master thesis report, following a error coding background, we describe Low-Density Parity-Check codes and their decoding algorithm, and also requirements and architectures of LPDC decoder implementations.

Style APA, Harvard, Vancouver, ISO itp.
7

Warburton, Keith. "Control jets in low density flow". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hogg, Neil. "Oxidative modification of low density lipoprotein". Thesis, University of Essex, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ahmad, Feroz. "Lysosomal oxidation of Low Density Lipoproteins". Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/72957/.

Pełny tekst źródła
Streszczenie:
Oxidation of LDL is widely believed to be a key process in the pathogenesis of atherosclerosis. However, LDL oxidation has been shown to be inhibited by interstitial fluid and also large clinical trials have shown no protection by antioxidant. Recent work has shown that LDL can be oxidised by iron within the lysosomes of macrophages. Here, we have explored the possible mechanism by which iron is able to oxidise LDL under lysosomal conditions, and also how lysosomotropic antioxidant, cysteamine is able to prevent it. More recently, it has been shown that human macrophages are able to rapidly phagocytose LDL aggregated by enzymes, such as sphingomyelinase (SMaseLDL) and oxidised it by iron inside lysosomes, which have a pH of about 4.5. Here, the chemical characteristics (lipid hydroperoxides and oxysterols) of SMase-LDL oxidised by inorganic iron at lysosomal pH (4.5) have been determined in vitro and compared to the native LDL. In the lysosomes of macrophages, SMase-LDL increased the intralysosomal lipid peroxidation and ceroid formation which was greatly inhibited by cysteamine. There is good evidence which suggests that lysosomal dysfunction plays an important role in the atherosclerotic plaque development. Here, it is shown that lysosomal oxidation of SMase-LDL in human macrophages can cause lysosomal dysfunction, induce ceroid associated cellular senescence, and increase the expression of inflammatory cytokine like TNF-α. The work here also demonstrates that preventing the lysosomal LDL oxidation, with antioxidants like cysteamine, offers protection against the SMase-LDL induced lysosomal dysfunction.
Style APA, Harvard, Vancouver, ISO itp.
10

Verdugo, Salgado Celia Anahi. "Star formation in low gas density and low metallicity environments". Observatoire de Paris, 2015. https://hal.science/tel-02095302.

Pełny tekst źródła
Streszczenie:
Dans les galaxies proches, la relation empirique de Kennicutt-Schmidt (KS) a été établie entre la densité surfacique de formation d’étoiles et la densité surfacique de gaz. Elle est forte et presque linéaire quand on considère le gaz moléculaire (H2) mais devient moins valable lorsque l’hydrogène n’est qu’atomique (HI). Ces régions de densité de gaz faible sont d’une importance cruciale dans le domaine de la formation d’étoiles, car elles possèdent les mêmes conditions que dans les galaxies de l’univers jeune, de faible métallicité. Cette thèse compile les données observationnelles obtenues au télescope de 30 m. De l’IRAM sur deux types de régions distinctes : les galaxies à disque ayant une émission ultra-violet étendue (XUV), et le milieu interstellaire déplacé dans le milieu intra-amas (ICM) chaud sous l’effet du balayage de la pression dynamique dans l’amas de la Vierge. Pour déterminer la présence des molécules H2 et afin d’étudier la relation KS dans ces régions, des observations de CO ont été faites dans les parties externes des galaxies XUV, et nous avons à la fois des détections et des limites supérieures. Les relations KS ont montré une loi de puissance discontinue pour des densités de gaz faibles, en dessous du seuil de la transition de phase HI-H2. Dans l’amas de la Vierge, des observations similaires de Co ont été faites le long des bras marée qui relient NGC4388 et M86, où aucune présence de H2 n’est attendue. Nous avons effectué des détections, montrant une efficacité de formation d’étoiles très faible, et montrant de nouveau une discontinuité de la relation KS pour des densités de gaz faibles, prouvant que les processus bien connus de consommation du gaz à forte densité ne peuvent être généralisés aux densités plus faibles. D’autre part, nos résultats montrent que le gaz H2 peut survivre un temps long que prévu dans l’ICM hostile
In nearby galaxies, an empirical relation has been established between star formation and gas surface densities, the Kennicutt-Schmidt (KS). The relation is nearly linear when molecular gas (H2) is considered, while is less tight with atomic hydrogen (HI). These low gas density regions are of a key importance in the field of star formation, since the are also low metallicity environments, resembling the conditions of a younger universe. This thesis summarizes the observational work done with the IRAM 30MT telescope in two kinds of such regions : disk galaxies with extended ultra-violet emission (XUV), and the interstellar medium going into the hot intra-cluster medium (ICM) under ram-pressure stripping in the Virgo cluster. The galex telescope has unveiled in far ultra-violet (FUV) star formation in the outer parts of some disk galaxies that was not traced by HA. To determine the presence of H2 and analyse the K-S relation in these regions, CO observations where done in the outskirts of several XUV disk galaxies, finding both detections and upper limits. These K-S relations showed a broken power law at low gas densities, below the HI-H2 threshold. In the Virgo cluster, similar CO observations were done along the HI tidal arm connecting NGC4388 and M86, where no H2 is expected. Two detections were found, showing very low star formation efficiencies (depleting less than 0,1 % of the gas reservoir per 10 [exposant] 8 yr), and showing again a disconuity of the K-S relation at low gas densities, probing that the process of a gas consumption into stars well known at high densities cannot be extrapolated to lower densities, and that H2 can survive a certain time in the hostile ICM
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Low-density"

1

Schramm, Helmut. Low Rise — High Density. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-75794-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hilyard, N. C., i A. Cunningham, red. Low density cellular plastics. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1256-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Aziz, T. Crosslinking of low-density polythylene. Manchester: UMIST, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Leon, G. Crosslinking of low-density polyethylene. Manchester: UMIST, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gallagher, Robert G. Low-density parity-check codes. Cambridge, Mass: MIT-Press, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gallager, Robert G. Low-density parity-check codes. Cambridge: M.I.T. Press, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Plastics, Shell. Production of film from low density polyethylene. London: Shell, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rovini, Massimo. Low-density parity-check codes: A tutorial. Noordwijk: ESA Publications Division, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Arrigone, Jorge Luis. Urban densification through low-rise/high-density housing. Halfway House, South Africa: Development Bank of Southern Africa, Publications Unit, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Weber, L. Controlled density low strength material backfill in Illinois. S.l: s.n, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Low-density"

1

DebRoy, T., i H. K. D. H. Bhadeshia. "Low-Density Steels". W Innovations in Everyday Engineering Materials, 113–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57612-7_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Koppenwallner, Georg. "Low Density Facilities". W Advances in Hypersonics, 259–323. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0379-7_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lackner, K. J., i D. Peetz. "Low density lipoprotein". W Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_1972-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Whelan, Tony, i John Goff. "Low Density Polyethylene". W Injection Molding of Thermoplastic Materials - 2, 74–84. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-5502-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lackner, K. J., i D. Peetz. "Low density lipoprotein". W Springer Reference Medizin, 1531–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_1972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gooch, Jan W. "Low-Density Polyethylene". W Encyclopedic Dictionary of Polymers, 434. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chen, Shangping, i Radhakanta Rana. "Low-Density Steels". W High-Performance Ferrous Alloys, 211–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53825-5_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cunningham, A., i N. C. Hilyard. "Physical behaviour of polymeric foams — an overview". W Low density cellular plastics, 1–21. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1256-7_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lauriks, Walter. "Acoustic characteristics of low density foams". W Low density cellular plastics, 319–61. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1256-7_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Artavia, Luis D., i Christopher W. Macosko. "Polyurethane flexible foam formation". W Low density cellular plastics, 22–55. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1256-7_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Low-density"

1

BIRD, G. "Low density aerothermodynamics". W 20th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-994.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lewis, John Courtenay. "Low density intercollisional interference". W The 15th international conference on spectral line shapes. AIP, 2001. http://dx.doi.org/10.1063/1.1370685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sommer, Naftali, Meir Feder i Ofir Shalvi. "Low Density Lattice Codes". W 2006 IEEE International Symposium on Information Theory. IEEE, 2006. http://dx.doi.org/10.1109/isit.2006.261680.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kienle, Frank. "Low-Density MIMO Codes". W 2008 5th International Symposium on Turbo Codes and Related Topics. IEEE, 2008. http://dx.doi.org/10.1109/turbocoding.2008.4658681.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Boutros, Joseph J., Nicola di Pietro i Nour Basha. "Generalized low-density (GLD) lattices". W 2014 IEEE Information Theory Workshop (ITW). IEEE, 2014. http://dx.doi.org/10.1109/itw.2014.6970783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Palvinskaya, Tatsiana, Christopher Lenox, MaryEllen Antkowiak, Elianne Burg, Anne E. Dixon, Michael B. Fessler, Matthew Poynter i Benjamin T. Suratt. "Low Density Lipoprotein Activate Neutrophils". W American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a4349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yona, Yair, i Meir Feder. "Complex low density lattice codes". W 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Punekar, Mayur, i Joseph Jean Boutros. "Diversity of low-density lattices". W 2015 22nd International Conference on Telecommunications (ICT). IEEE, 2015. http://dx.doi.org/10.1109/ict.2015.7124696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

NAGARAJA, K. "Low density heat transfer phenomena". W 27th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2899.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kienle, F. "On Low-Density MIMO Codes". W ICC 2009 - 2009 IEEE International Conference on Communications. IEEE, 2009. http://dx.doi.org/10.1109/icc.2009.5199242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Low-density"

1

Quant, A. J. A low-density potting compound. Office of Scientific and Technical Information (OSTI), luty 2015. http://dx.doi.org/10.2172/1170251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kahl, S. B. Low density lipoprotein development and evaluation. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/421327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hotaling, S. P. Ultra-Low Density Aerogel Mirror Substrates. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1993. http://dx.doi.org/10.21236/ada266128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Green, Micah J. Interfacial Engineering for Low-Density Graphene Nanocomposites. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2014. http://dx.doi.org/10.21236/ada610190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Quesenberry, Matthew J., Phillip H. Madison i Robert E. Jensen. Characterization of Low Density Glass Filled Epoxies. Fort Belvoir, VA: Defense Technical Information Center, marzec 2003. http://dx.doi.org/10.21236/ada412137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fournier, K. B., J. Colvin, A. Yogo, G. E. Kemp, H. Matsukuma, N. Tanaka, Z. Zhang, K. Koga, S. Tosaki i H. Nishimura. Laser Propagation in Nanostructured Ultra-Low-Density Materials. Office of Scientific and Technical Information (OSTI), marzec 2016. http://dx.doi.org/10.2172/1247286.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kong, F. M., S. R. Buckley, C. L. Giles, Jr, B. L. Haendler, L. M. Hair, S. A. Letts, G. E. Overturf, III, C. W. Price i R. C. Cook. Low-density carbonized resorcinol-formaldehyde foams. Final report. Office of Scientific and Technical Information (OSTI), lipiec 1991. http://dx.doi.org/10.2172/6108157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gould, William A., Sebastian Martinuzzi i Olga M. Ramos Gonzalez. High and low density development in Puerto Rico. San Juan, PR: U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, 2008. http://dx.doi.org/10.2737/iitf-rmap-11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Nicholas, Nolan. Carbon Nanotube Spaceframes for Low-Density Aerospace Materials. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2012. http://dx.doi.org/10.21236/ada566139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Klein, W., S. Redner i H. E. Stanley. Percolation and Low Density Materials: Theory and Applications. Fort Belvoir, VA: Defense Technical Information Center, maj 1986. http://dx.doi.org/10.21236/ada169204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii