Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Locally Recoverable Codes.

Artykuły w czasopismach na temat „Locally Recoverable Codes”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 48 najlepszych artykułów w czasopismach naukowych na temat „Locally Recoverable Codes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Salgado, Cecilia, Anthony Varilly-Alvarado i Jose Felipe Voloch. "Locally Recoverable Codes on Surfaces". IEEE Transactions on Information Theory 67, nr 9 (wrzesień 2021): 5765–77. http://dx.doi.org/10.1109/tit.2021.3090939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Boran. "Locally recoverable codes in Hermitian function fields with certain types of divisors". AIMS Mathematics 7, nr 6 (2022): 9656–67. http://dx.doi.org/10.3934/math.2022537.

Pełny tekst źródła
Streszczenie:
<abstract><p>A locally recoverable code with locality $ \bf r $ can recover the missing coordinate from at most $ {\bf r} $ symbols. The locally recoverable codes have attracted a lot of attention because they are more advanced coding techniques that are applied to distributed and cloud storage systems. In this work, we focus on locally recoverable codes in Hermitian function fields over $ \Bbb F_{q^2} $, where $ q $ is a prime power. With a certain type of divisor, we obtain an improved lower bound of the minimum distance for locally recoverable codes in Hermitian function fields. For doing this, we give explicit formulae of the dimension for some divisors of Hermitian function fields. We also present a standard that tells us when a divisor with certain places suggests an improved lower bound.</p></abstract>
Style APA, Harvard, Vancouver, ISO itp.
3

Barg, Alexander, Itzhak Tamo i Serge Vladut. "Locally Recoverable Codes on Algebraic Curves". IEEE Transactions on Information Theory 63, nr 8 (sierpień 2017): 4928–39. http://dx.doi.org/10.1109/tit.2017.2700859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Munuera, Carlos, i Wanderson Tenório. "Locally recoverable codes from rational maps". Finite Fields and Their Applications 54 (listopad 2018): 80–100. http://dx.doi.org/10.1016/j.ffa.2018.07.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Galindo, Carlos, Fernando Hernando i Carlos Munuera. "Locally recoverable J-affine variety codes". Finite Fields and Their Applications 64 (czerwiec 2020): 101661. http://dx.doi.org/10.1016/j.ffa.2020.101661.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tamo, Itzhak, i Alexander Barg. "A Family of Optimal Locally Recoverable Codes". IEEE Transactions on Information Theory 60, nr 8 (sierpień 2014): 4661–76. http://dx.doi.org/10.1109/tit.2014.2321280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ballico, E. "Locally Recoverable Codes correcting many erasures over small fields". Designs, Codes and Cryptography 89, nr 9 (6.07.2021): 2157–62. http://dx.doi.org/10.1007/s10623-021-00905-4.

Pełny tekst źródła
Streszczenie:
AbstractWe define linear codes which are s-Locally Recoverable Codes (or s-LRC), i.e. codes which are LRC in s ways, the case $$s=1$$ s = 1 roughly corresponding to the classical case of LRC codes. We use them to describe codes which correct many erasures, although they have small minimum distance. Any letter of a received word may be corrected using s different local codes. We use the Segre embedding of s local codes and then a linear projection.
Style APA, Harvard, Vancouver, ISO itp.
8

Blaum, Mario, i Steven R. Hetzler. "Integrated interleaved codes as locally recoverable codes: properties and performance". International Journal of Information and Coding Theory 3, nr 4 (2016): 324. http://dx.doi.org/10.1504/ijicot.2016.079494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cadambe, Viveck R., i Arya Mazumdar. "Bounds on the Size of Locally Recoverable Codes". IEEE Transactions on Information Theory 61, nr 11 (listopad 2015): 5787–94. http://dx.doi.org/10.1109/tit.2015.2477406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tamo, Itzhak, Alexander Barg i Alexey Frolov. "Bounds on the Parameters of Locally Recoverable Codes". IEEE Transactions on Information Theory 62, nr 6 (czerwiec 2016): 3070–83. http://dx.doi.org/10.1109/tit.2016.2518663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Agarwal, Abhishek, Alexander Barg, Sihuang Hu, Arya Mazumdar i Itzhak Tamo. "Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes". IEEE Transactions on Information Theory 64, nr 5 (maj 2018): 3481–92. http://dx.doi.org/10.1109/tit.2018.2800042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Micheli, Giacomo. "Constructions of Locally Recoverable Codes Which are Optimal". IEEE Transactions on Information Theory 66, nr 1 (styczeń 2020): 167–75. http://dx.doi.org/10.1109/tit.2019.2939464.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Márquez-Corbella, Irene, Edgar Martínez-Moro i Carlos Munuera. "Computing sharp recovery structures for locally recoverable codes". Designs, Codes and Cryptography 88, nr 8 (10.03.2020): 1687–98. http://dx.doi.org/10.1007/s10623-020-00746-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Li, Xiaoru, i Ziling Heng. "Constructions of near MDS codes which are optimal locally recoverable codes". Finite Fields and Their Applications 88 (czerwiec 2023): 102184. http://dx.doi.org/10.1016/j.ffa.2023.102184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Munuera, Carlos, Wanderson Tenório i Fernando Torres. "Locally recoverable codes from algebraic curves with separated variables". Advances in Mathematics of Communications 14, nr 2 (2020): 265–78. http://dx.doi.org/10.3934/amc.2020019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Chen, Bocong, i Jing Huang. "A Construction of Optimal $(r,\delta)$ -Locally Recoverable Codes". IEEE Access 7 (2019): 180349–53. http://dx.doi.org/10.1109/access.2019.2957942.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Rajput, Charul, i Maheshanand Bhaintwal. "RS-like locally recoverable codes with intersecting recovering sets". Finite Fields and Their Applications 68 (grudzień 2020): 101729. http://dx.doi.org/10.1016/j.ffa.2020.101729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Liu, Jian, Sihem Mesnager i Deng Tang. "Constructions of optimal locally recoverable codes via Dickson polynomials". Designs, Codes and Cryptography 88, nr 9 (15.02.2020): 1759–80. http://dx.doi.org/10.1007/s10623-020-00731-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Blaum, Mario. "Extended Integrated Interleaved Codes Over Any Field With Applications to Locally Recoverable Codes". IEEE Transactions on Information Theory 66, nr 2 (luty 2020): 936–56. http://dx.doi.org/10.1109/tit.2019.2934134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

López, Hiram H., Gretchen L. Matthews i Ivan Soprunov. "Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes". Designs, Codes and Cryptography 88, nr 8 (7.02.2020): 1673–85. http://dx.doi.org/10.1007/s10623-020-00726-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Zhang, Guanghui. "A New Construction of Optimal (r, δ) Locally Recoverable Codes". IEEE Communications Letters 24, nr 9 (wrzesień 2020): 1852–56. http://dx.doi.org/10.1109/lcomm.2020.2998587.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Liu, Jian, Sihem Mesnager i Lusheng Chen. "New Constructions of Optimal Locally Recoverable Codes via Good Polynomials". IEEE Transactions on Information Theory 64, nr 2 (luty 2018): 889–99. http://dx.doi.org/10.1109/tit.2017.2713245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Kruglik, Stanislav, Kamilla Nazirkhanova i Alexey Frolov. "New Bounds and Generalizations of Locally Recoverable Codes With Availability". IEEE Transactions on Information Theory 65, nr 7 (lipiec 2019): 4156–66. http://dx.doi.org/10.1109/tit.2019.2897705.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ballico, Edoardo, i Chiara Marcolla. "Higher Hamming weights for locally recoverable codes on algebraic curves". Finite Fields and Their Applications 40 (lipiec 2016): 61–72. http://dx.doi.org/10.1016/j.ffa.2016.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Luo, Gaojun, i Xiwang Cao. "Constructions of Optimal Binary Locally Recoverable Codes via a General Construction of Linear Codes". IEEE Transactions on Communications 69, nr 8 (sierpień 2021): 4987–97. http://dx.doi.org/10.1109/tcomm.2021.3083320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Qian, Jianfa, i Lina Zhang. "New Optimal Cyclic Locally Recoverable Codes of Length $n=2(q+1)$". IEEE Transactions on Information Theory 66, nr 1 (styczeń 2020): 233–39. http://dx.doi.org/10.1109/tit.2019.2942304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Huang, Pengfei, Eitan Yaakobi i Paul H. Siegel. "Multi-Erasure Locally Recoverable Codes Over Small Fields: A Tensor Product Approach". IEEE Transactions on Information Theory 66, nr 5 (maj 2020): 2609–24. http://dx.doi.org/10.1109/tit.2019.2962012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jin, Lingfei. "Explicit Construction of Optimal Locally Recoverable Codes of Distance 5 and 6 via Binary Constant Weight Codes". IEEE Transactions on Information Theory 65, nr 8 (sierpień 2019): 4658–63. http://dx.doi.org/10.1109/tit.2019.2901492.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Zhang, Xinmiao, i Zhenshan Xie. "Relaxing the Constraints on Locally Recoverable Erasure Codes by Finite Field Element Variation". IEEE Communications Letters 23, nr 10 (październik 2019): 1680–83. http://dx.doi.org/10.1109/lcomm.2019.2927668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Su, Yi-Sheng. "Optimal Pliable Fractional Repetition Codes That are Locally Recoverable: A Bipartite Graph Approach". IEEE Transactions on Information Theory 65, nr 2 (luty 2019): 985–99. http://dx.doi.org/10.1109/tit.2018.2876284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bartoli, Daniele, Maria Montanucci i Luciane Quoos. "Locally Recoverable Codes From Automorphism Group of Function Fields of Genus g ≥ 1". IEEE Transactions on Information Theory 66, nr 11 (listopad 2020): 6799–808. http://dx.doi.org/10.1109/tit.2020.2995852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Haymaker, Kathryn, Beth Malmskog i Gretchen L. Matthews. "Locally recoverable codes with availability t≥2 from fiber products of curves". Advances in Mathematics of Communications 12, nr 2 (2018): 317–36. http://dx.doi.org/10.3934/amc.2018020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

C., Pavan Kumar, i Selvakumar R. "Reliable and secure data communication in wireless sensor networks using optimal locally recoverable codes". Peer-to-Peer Networking and Applications 13, nr 3 (7.09.2019): 742–51. http://dx.doi.org/10.1007/s12083-019-00809-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Balaji, S. B., Ganesh R. Kini i P. Vijay Kumar. "A Tight Rate Bound and Matching Construction for Locally Recoverable Codes With Sequential Recovery From Any Number of Multiple Erasures". IEEE Transactions on Information Theory 66, nr 2 (luty 2020): 1023–52. http://dx.doi.org/10.1109/tit.2019.2958970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Gopalan, Parikshit, Cheng Huang, Bob Jenkins i Sergey Yekhanin. "Explicit Maximally Recoverable Codes With Locality". IEEE Transactions on Information Theory 60, nr 9 (wrzesień 2014): 5245–56. http://dx.doi.org/10.1109/tit.2014.2332338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Mazumdar, Arya. "Capacity of Locally Recoverable Codes". IEEE Journal on Selected Areas in Information Theory, 2023, 1. http://dx.doi.org/10.1109/jsait.2023.3300901.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Haymaker, Kathryn, i Justin O'Pella. "Locally recoverable codes from planar graphs". Journal of Algebra Combinatorics Discrete Structures and Applications, 17.11.2019, 33–51. http://dx.doi.org/10.13069/jacodesmath.645021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Li, Xiaoru, i Ziling Heng. "A construction of optimal locally recoverable codes". Cryptography and Communications, 5.12.2022. http://dx.doi.org/10.1007/s12095-022-00619-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Blaum, Mario. "Multiple-Layer Integrated Interleaved Codes: A Class of Hierarchical Locally Recoverable Codes". IEEE Transactions on Information Theory, 2022, 1. http://dx.doi.org/10.1109/tit.2022.3166210.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Li, Fagang, Hao Chen, Huimin Lao i Shanxiang Lyu. "New upper bounds and constructions of multi-erasure locally recoverable codes". Cryptography and Communications, 2.12.2022. http://dx.doi.org/10.1007/s12095-022-00618-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Xu, Li, Zhengchun Zhou, Jun Zhang i Sihem Mesnager. "Optimal quaternary $$(r,\delta )$$-locally recoverable codes: their structures and complete classification". Designs, Codes and Cryptography, 27.12.2022. http://dx.doi.org/10.1007/s10623-022-01165-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Xing, Chaoping, i Chen Yuan. "Construction of optimal (r, δ)-locally recoverable codes and connection with graph theory". IEEE Transactions on Information Theory, 2022, 1. http://dx.doi.org/10.1109/tit.2022.3157612.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Dukes, Austin, Giacomo Micheli i Vincenzo Pallozzi Lavorante. "Optimal locally recoverable codes with hierarchy from nested F-adic expansions". IEEE Transactions on Information Theory, 2023, 1. http://dx.doi.org/10.1109/tit.2023.3298401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chara, María, Sam Kottler, Beth Malmskog, Bianca Thompson i Mckenzie West. "Minimum distance and parameter ranges of locally recoverable codes with availability from fiber products of curves". Designs, Codes and Cryptography, 4.03.2023. http://dx.doi.org/10.1007/s10623-023-01189-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kazemi, Anahita, i Mehdi Ghiyasvand. "An upper bound on the minimum distance in locally recoverable codes with multiple localities and availability". Physical Communication, czerwiec 2023, 102124. http://dx.doi.org/10.1016/j.phycom.2023.102124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Krishnan, M. Nikhil. "Erasure Coding for Big Data". Advanced Computing and Communications, 10.03.2019. http://dx.doi.org/10.34048/2019.1.f1.

Pełny tekst źródła
Streszczenie:
This article deals with the reliable and efficient storage of ‘Big Data’, by which is meant the vast quantities of data that are stored in data centers worldwide. Given that storage units are prone to failure, to protect against data loss, data pertaining to a data file is stored in distributed and redundant fashion across multiple storage units. While replication was and continues to be commonly employed, the explosive growth in amount of data that is generated on a daily basis, has forced the industry to increasingly turn to erasure codes such as the Reed-Solomon code. The reason for this is that erasure codes have the potential to keep to a minimum, the storage overhead required to ensure a given level of reliability. There is also need for storing data such that the system can recover efficiently from the failure of a single storage unit. Conventional erasure-coding techniques are inefficient in this respect. To address this situation, coding theorists have come up with two new classes of erasure codes known respectively as regenerating codes and locally recoverable codes. These codes have served both to address the needs of industry as well as enrich coding theory by adding two new branches to the discipline. This article provides an overview of these exciting new developments, from the (somewhat biased) perspective of the authors.
Style APA, Harvard, Vancouver, ISO itp.
47

Doron, Dean, Dana Moshkovitz, Justin Oh i David Zuckerman. "Nearly Optimal Pseudorandomness From Hardness". Journal of the ACM, 10.08.2022. http://dx.doi.org/10.1145/3555307.

Pełny tekst źródła
Streszczenie:
Existing proofs that deduce BPP = P from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown . Specifically, assuming exponential lower bounds against randomized NP ∩ coNP circuits, formally known as randomized SVN circuits, we convert any randomized algorithm over inputs of length n running in time t ≥ n into a deterministic one running in time t 2 + α for an arbitrarily small constant α > 0. Such a slowdown is nearly optimal for t close to n , since under standard complexity-theoretic assumptions, there are problems with an inherent quadratic derandomization slowdown. We also convert any randomized algorithm that errs rarely into a deterministic algorithm having a similar running time (with pre-processing). The latter derandomization result holds under weaker assumptions, of exponential lower bounds against deterministic SVN circuits. Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling circuits of size s with seed length (1 + α )log s , under the assumption that there exists a function f ∈ E that requires randomized SVN circuits of size at least \(2^{(1-\alpha ^{\prime })n} \) , where α = O ( α ′). The construction uses, among other ideas, a new connection between pseudoentropy generators and locally list recoverable codes.
Style APA, Harvard, Vancouver, ISO itp.
48

Shivakrishna, D., Aaditya M. Nair i V. Lalitha. "Maximally Recoverable Codes with Hierarchical Locality: Constructions and Field-Size Bounds". IEEE Transactions on Information Theory, 2022, 1. http://dx.doi.org/10.1109/tit.2022.3212076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii