Gotowa bibliografia na temat „Locally convex topological vector space”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Locally convex topological vector space”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Locally convex topological vector space"
Muller, M. A. "Bornologiese pseudotopologiese vektorruimtes". Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 9, nr 1 (5.07.1990): 15–18. http://dx.doi.org/10.4102/satnt.v9i1.434.
Pełny tekst źródłaGabriyelyan, Saak S., i Sidney A. Morris. "Free Subspaces of Free Locally Convex Spaces". Journal of Function Spaces 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/2924863.
Pełny tekst źródłaPark, Sehie. "Best approximation theorems for composites of upper semicontinuous maps". Bulletin of the Australian Mathematical Society 51, nr 2 (kwiecień 1995): 263–72. http://dx.doi.org/10.1017/s000497270001409x.
Pełny tekst źródłaRobertson, W. J., S. A. Saxon i A. P. Robertson. "Barrelled spaces and dense vector subspaces". Bulletin of the Australian Mathematical Society 37, nr 3 (czerwiec 1988): 383–88. http://dx.doi.org/10.1017/s0004972700027003.
Pełny tekst źródłaDE BEER, RICHARD J. "TAUBERIAN THEOREMS AND SPECTRAL THEORY IN TOPOLOGICAL VECTOR SPACES". Glasgow Mathematical Journal 55, nr 3 (25.02.2013): 511–32. http://dx.doi.org/10.1017/s0017089512000699.
Pełny tekst źródłaRobertson, Neill. "Extending Edgar's ordering to locally convex spaces". Glasgow Mathematical Journal 34, nr 2 (maj 1992): 175–88. http://dx.doi.org/10.1017/s0017089500008697.
Pełny tekst źródłaGlöckner, Helge. "Aspects of Differential Calculus Related to Infinite-Dimensional Vector Bundles and Poisson Vector Spaces". Axioms 11, nr 5 (9.05.2022): 221. http://dx.doi.org/10.3390/axioms11050221.
Pełny tekst źródłaKhan, Liaqat Ali, i Saud M. Alsulami. "Asymptotic Almost Periodic Functions with Range in a Topological Vector Space". Journal of Function Spaces and Applications 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/965746.
Pełny tekst źródłaGarcía-Pacheco, Francisco Javier, Soledad Moreno-Pulido, Enrique Naranjo-Guerra i Alberto Sánchez-Alzola. "Non-Linear Inner Structure of Topological Vector Spaces". Mathematics 9, nr 5 (25.02.2021): 466. http://dx.doi.org/10.3390/math9050466.
Pełny tekst źródłaMaza, Rodolfo Erodias, i Sergio Rosales Canoy, Jr. "Denjoy-type Integrals in Locally Convex Topological Vector Space". European Journal of Pure and Applied Mathematics 14, nr 4 (10.11.2021): 1169–83. http://dx.doi.org/10.29020/nybg.ejpam.v14i4.4115.
Pełny tekst źródłaRozprawy doktorskie na temat "Locally convex topological vector space"
Vera, Mendoza Rigoberto. "Linear operations on locally convex topological vector spaces". Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186699.
Pełny tekst źródłaGriesan, Raymond William. "Nabla spaces, the theory of the locally convex topologies (2-norms, etc.) which arise from the mensuration of triangles". Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184510.
Pełny tekst źródłaCavalcante, Wasthenny Vasconcelos. "Espaços Vetoriais Topológicos". Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9277.
Pełny tekst źródłaMade available in DSpace on 2017-08-17T14:00:23Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1661057 bytes, checksum: 913a7f671e2e028b60d14a02274f932a (MD5) Previous issue date: 2015-02-27
In this work we investigate the concept of topological vector spaces and their properties. In the rst chapter we present two sections of basic results and in the other sections we present a more general study of such spaces. In the second chapter we restrict ourselves to the real scalar eld and we study, in the context of locally convex spaces, the Hahn-Banach and Banach-Alaoglu theorems. We also build the weak, weak-star, of bounded convergence and of pointwise convergence topologies. Finally we investigate the Theorem of Banach-Steinhauss, the Open Mapping Theorem and the Closed Graph Theorem.
Neste trabalho, estudamos o conceito de espa cos vetoriais topol ogicos e suas propriedades. No primeiro cap tulo, apresentamos duas se c~oes de resultados b asicos e, nas demais se c~oes, apresentamos um estudo sobre tais espa cos de forma mais ampla. No segundo cap tulo, restringimo-nos ao corpo dos reais e fazemos um estudo sobre os espa cos localmente convexos, o Teorema de Hahn-Banach, o Teorema de Banach- Alaoglu, constru mos as topologias fraca, fraca-estrela, da converg^encia limitada e da converg^encia pontual. Por ultimo, estudamos o Teorema da Limita c~ao Uniforme, o Teorema do Gr a co Fechado e o da Aplica c~ao Aberta no contexto mais geral dos espa cos de Fr echet.
Baratov, Rishat. "Efficient conic decomposition and projection onto a cone in a Banach ordered space". Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/61401.
Pełny tekst źródłaSehgal, Kriti. "Duality for Spaces of Holomorphic Functions into a Locally Convex Topological Vector Space". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4913.
Pełny tekst źródłaHelmstedt, Janet Margaret. "Closed graph theorems for locally convex topological vector spaces". Thesis, 2015. http://hdl.handle.net/10539/18010.
Pełny tekst źródłaLet 4 be the class of pairs of loc ..My onvex spaces (X,V) “h ‘ch are such that every closed graph linear ,pp, 1 from X into V is continuous. It B is any class of locally . ivex l.ausdortf spaces. let & w . (X . (X.Y) e 4 for ,11 Y E B). " ‘his expository dissertation, * (B) is investigated, firstly i r arbitrary B . secondly when B is the class of C,-complete paces and thirdly whon B is a class of locally convex webbed s- .ces
Venter, Rudolf Gerrit. "Measures and functions in locally convex spaces". Thesis, 2010. http://hdl.handle.net/2263/26547.
Pełny tekst źródłaThesis (PhD(Mathematics))--University of Pretoria, 2010.
Mathematics and Applied Mathematics
unrestricted
Tshilombo, Mukinayi Hermenegilde. "Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces". Thesis, 2015. http://hdl.handle.net/10500/19942.
Pełny tekst źródłaMathematical Sciences
D. Phil. (Mathematics)
Części książek na temat "Locally convex topological vector space"
Bourbaki, Nicolas. "Convex sets and locally convex spaces". W Topological Vector Spaces, 31–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_2.
Pełny tekst źródłaSchaefer, H. H., i M. P. Wolff. "Locally Convex Topological Vector Spaces". W Topological Vector Spaces, 36–72. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_3.
Pełny tekst źródłaAlpay, Daniel. "Locally Convex Topological Vector Spaces". W An Advanced Complex Analysis Problem Book, 249–83. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16059-7_5.
Pełny tekst źródłaGong, Xun Hua, Wan Tao Fu i Wei Liu. "Super Efficiency for a Vector Equilibrium in Locally Convex Topological Vector Spaces". W Vector Variational Inequalities and Vector Equilibria, 233–52. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0299-5_13.
Pełny tekst źródłaMorales, Pedro. "Properties of the set of global solutions for the cauchy problems in a locally convex topological vector space". W Ordinary and Partial Differential Equations, 276–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074736.
Pełny tekst źródła"Locally Convex Spaces and Seminorms". W Topological Vector Spaces, 133–72. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584888673-8.
Pełny tekst źródłaWong, Yau-Chuen. "Normed Spaces Associated with a Locally Convex Space". W Introductory Theory of Topological Vector Spaces, 162–69. CRC Press, 2019. http://dx.doi.org/10.1201/9780203749807-10.
Pełny tekst źródłaWong, Yau-Chuen. "The Bornological Space Associated with a Locally Convex Space". W Introductory Theory of Topological Vector Spaces, 175–79. CRC Press, 2019. http://dx.doi.org/10.1201/9780203749807-12.
Pełny tekst źródłaWong, Yau-Chuen. "von Neumann Bornologies and Locally Convex Topologies Determined by Convex Bornologies". W Introductory Theory of Topological Vector Spaces, 198–204. CRC Press, 2019. http://dx.doi.org/10.1201/9780203749807-15.
Pełny tekst źródła"Deformations on locally convex topological vector spaces". W Interdisciplinary Mathematical Sciences, 15–24. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709639_0003.
Pełny tekst źródłaStreszczenia konferencji na temat "Locally convex topological vector space"
Kraus, Eugene J., Henk J. A. M. Heijmans i Edward R. Dougherty. "Spatial-scaling-compatible morphological granulometries on locally convex topological vector spaces". W San Diego '92, redaktorzy Paul D. Gader, Edward R. Dougherty i Jean C. Serra. SPIE, 1992. http://dx.doi.org/10.1117/12.60649.
Pełny tekst źródłaTsertos, Yannis. "On A-convex and lm-convex algebra structures of a locally convex space". W Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-32.
Pełny tekst źródła