Artykuły w czasopismach na temat „Localized Surface Plasmon Resonance signals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Localized Surface Plasmon Resonance signals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hwang, Hyunsik, i Hyunjoon Song. "Nanoscale reaction monitoring using localized surface plasmon resonance scatterometry". Chemical Physics Reviews 3, nr 3 (wrzesień 2022): 031301. http://dx.doi.org/10.1063/5.0090949.
Pełny tekst źródłaTran, Vien Thi, i Heongkyu Ju. "Fluorescence Enhancement via Dual Coupling of Dye Molecules with Silver Nanostructures". Chemosensors 9, nr 8 (10.08.2021): 217. http://dx.doi.org/10.3390/chemosensors9080217.
Pełny tekst źródłaTatsuma, Tetsu, Yu Katagi, Satoshi Watanabe, Kazutaka Akiyoshi, Tokuhisa Kawawaki, Hiroyasu Nishi i Emiko Kazuma. "Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation". Chemical Communications 51, nr 28 (2015): 6100–6103. http://dx.doi.org/10.1039/c5cc01020a.
Pełny tekst źródłaLim, Hyunsoo, Dabum Kim, Yena Kim, Tomota Nagaura, Jungmok You, Jeonghun Kim, Hyun-Jong Kim, Jongbeom Na, Joel Henzie i Yusuke Yamauchi. "A mesopore-stimulated electromagnetic near-field: electrochemical synthesis of mesoporous copper films by micelle self-assembly". Journal of Materials Chemistry A 8, nr 40 (2020): 21016–25. http://dx.doi.org/10.1039/d0ta06228f.
Pełny tekst źródłaQi, Zhengqing, Jinhuan Li, Peng Chen, Lingling Zhang i Ke Ji. "Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering". Photonics 9, nr 10 (11.10.2022): 755. http://dx.doi.org/10.3390/photonics9100755.
Pełny tekst źródłaMeng, Lingyan, i Zhilin Yang. "Directional surface plasmon-coupled emission of tilted-tip enhanced spectroscopy". Nanophotonics 7, nr 7 (13.06.2018): 1325–32. http://dx.doi.org/10.1515/nanoph-2018-0033.
Pełny tekst źródłaSong, Wen-Bo, Yun Qi, Xiao-Peng Zhang, Ming-Li Wan i Jinna He. "Controlling the interference between localized and delocalized surface plasmons via incident polarization for optical switching". International Journal of Modern Physics B 32, nr 16 (28.06.2018): 1850194. http://dx.doi.org/10.1142/s0217979218501941.
Pełny tekst źródłaZhang, Yan, Bingyu Wang, Shihe Yang, Lidong Li i Lin Guo. "Facile synthesis of spinous-like Au nanostructures for unique localized surface plasmon resonance and surface-enhanced Raman scattering". New Journal of Chemistry 39, nr 4 (2015): 2551–56. http://dx.doi.org/10.1039/c4nj01769b.
Pełny tekst źródłaSingh, Ranjit, i Sanjeev Dewra. "Performance Analysis of Localized Surface Plasmon Resonance Sensor with and Without Bragg Grating". Journal of Optical Communications 41, nr 1 (18.12.2019): 45–50. http://dx.doi.org/10.1515/joc-2017-0141.
Pełny tekst źródłaZhou, Bei, Feng Gu, Yingzheng Liu i Di Peng. "Signal Enhancement of Pressure-Sensitive Film Based on Localized Surface Plasmon Resonance". Sensors 21, nr 22 (17.11.2021): 7627. http://dx.doi.org/10.3390/s21227627.
Pełny tekst źródłaLou, Zhi Chao, Jin Qiang Sun, Jin Feng Wan, Xiao Hong Zhang, Hai Qian Zhang i Ning Gu. "Quick and Sensitive Detection of Prion Disease-Associated Isoform (PrPSc) Using a Novel Gold Surface/PrPSc/Gold Nanoparticles Sandwich SPR Detection Assay". Journal of Nano Research 48 (lipiec 2017): 18–28. http://dx.doi.org/10.4028/www.scientific.net/jnanor.48.18.
Pełny tekst źródłaYu, Jeong Seon, Minsik Kim, Sanghoon Kim, Dong Han Ha, Bong Hyun Chung, Sang Jeon Chung i Jong-Sung Yu. "Characteristics of Localized Surface Plasmon Resonance of Nanostructured Au Patterns for Biosensing". Journal of Nanoscience and Nanotechnology 8, nr 9 (1.09.2008): 4548–52. http://dx.doi.org/10.1166/jnn.2008.ic20.
Pełny tekst źródłaZhang, Jie, Yu Lin Chen, Tuo Fan i Yong Zhu. "Large Area Au Decorated Multi-Walled CNTs Film for Surface Enhanced Raman Scattering". Key Engineering Materials 562-565 (lipiec 2013): 826–31. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.826.
Pełny tekst źródłaAbdulhalim, Ibrahim. "Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement". Nanophotonics 7, nr 12 (26.11.2018): 1891–916. http://dx.doi.org/10.1515/nanoph-2018-0129.
Pełny tekst źródłaWang, Jun, Gang Wang, Changlong Liu, Yimo Wang i Hui Qian. "Metal ion implantation into transparent dielectric slab: an effective route to high-stability localized surface plasmon resonance sensors". Nanotechnology 33, nr 3 (29.10.2021): 035711. http://dx.doi.org/10.1088/1361-6528/ac2f23.
Pełny tekst źródłaChegel, V. I., A. M. Lopatynskyi, V. K. Lytvyn, P. V. Demydov, J. P. Martínez-Pastor, R. Abargues, E. A. Gadea i S. A. Piletsky. "Localized surface plasmon resonance nanochips with molecularly imprinted polymer coating for explosives sensing". Semiconductor Physics, Quantum Electronics and Optoelectronics 23, nr 04 (19.11.2020): 431–36. http://dx.doi.org/10.15407/spqeo23.04.431.
Pełny tekst źródłaGhoshal, S. K., Asmahani Awang, M. R. Sahar i R. Arifin. "Gold Nanoparticles Stimulated Surface Plasmon Resonance Effects in Erbium-Zinc-Sodium-Tellurite Glass". Materials Science Forum 846 (marzec 2016): 52–57. http://dx.doi.org/10.4028/www.scientific.net/msf.846.52.
Pełny tekst źródłaAsing, Md Eaqub Ali i Sharifah Bee Abd Hamid. "SERS-Modeling in Molecular Sensing". Advanced Materials Research 1109 (czerwiec 2015): 223–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1109.223.
Pełny tekst źródłaHuang, Haowen, Caiting Qu, Xuanyong Liu, Shaowen Huang, Zhongjian Xu, Yingjie Zhu i Paul K. Chu. "Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury". Chemical Communications 47, nr 24 (2011): 6897. http://dx.doi.org/10.1039/c1cc12137e.
Pełny tekst źródłaAbumazwed, Ahmed, Wakana Kubo, Chen Shen, Takuo Tanaka i Andrew G. Kirk. "Projection method for improving signal to noise ratio of localized surface plasmon resonance biosensors". Biomedical Optics Express 8, nr 1 (23.12.2016): 446. http://dx.doi.org/10.1364/boe.8.000446.
Pełny tekst źródłaLiu, Zhenchao, Jinlong He i Sailing He. "Characterization and Sensing of Inert Gases with a High-Resolution SPR Sensor". Sensors 20, nr 11 (10.06.2020): 3295. http://dx.doi.org/10.3390/s20113295.
Pełny tekst źródłaBarbillon, Grégory. "Nanoplasmonics in High Pressure Environment". Photonics 7, nr 3 (28.07.2020): 53. http://dx.doi.org/10.3390/photonics7030053.
Pełny tekst źródłaShen, Tsu-Wang, Ting-Ku Ou, Bo-Yan Lin i Yi-Hsin Chien. "Plasmonic Gold Nanomaterials as Photoacoustic Signal Resonant Enhancers for Cysteine Detection". Nanomaterials 11, nr 8 (23.07.2021): 1887. http://dx.doi.org/10.3390/nano11081887.
Pełny tekst źródłaLee, Sang-Nam, Jin-Ha Choi, Hyeon-Yeol Cho i Jeong-Woo Choi. "Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals". Pharmaceutics 12, nr 1 (7.01.2020): 50. http://dx.doi.org/10.3390/pharmaceutics12010050.
Pełny tekst źródłaSzlachetko, Kamil, Piotr Piotrowski, Katarzyna Sadecka, Paweł Osewski, Dobrosława Kasprowicz i Dorota A. Pawlak. "Selective surface-enhanced Raman scattering in a bulk nanoplasmonic Bi2O3-Ag eutectic composite". Nanophotonics 9, nr 14 (8.07.2020): 4307–14. http://dx.doi.org/10.1515/nanoph-2020-0281.
Pełny tekst źródłaLiu, Jingyi, Lianchun Long i Yang Yang. "Modeling of Enhanced Polar Magneto-Optic Kerr Effect by Surface Plasmons in Au Bowtie Arrays". Nanomaterials 13, nr 2 (6.01.2023): 253. http://dx.doi.org/10.3390/nano13020253.
Pełny tekst źródłaLee, Tae-Han, Seung-Woo Lee, Ji-Ae Jung, Junhyoung Ahn, Min-Gon Kim i Yong-Beom Shin. "Signal Amplification by Enzymatic Reaction in an Immunosensor Based on Localized Surface Plasmon Resonance (LSPR)". Sensors 10, nr 3 (12.03.2010): 2045–53. http://dx.doi.org/10.3390/s100302045.
Pełny tekst źródłaAldosari, Fahad M. M. "Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering". Molecules 27, nr 3 (28.01.2022): 892. http://dx.doi.org/10.3390/molecules27030892.
Pełny tekst źródłaD’Acunto, Mario. "In Situ Surface-Enhanced Raman Spectroscopy of Cellular Components: Theory and Experimental Results". Materials 12, nr 9 (13.05.2019): 1564. http://dx.doi.org/10.3390/ma12091564.
Pełny tekst źródłaLiu, Yun, Ning Zhang, Ping Li, Li Yu, Shimeng Chen, Yang Zhang, Zhenguo Jing i Wei Peng. "Low-Cost Localized Surface Plasmon Resonance Biosensing Platform with a Response Enhancement for Protein Detection". Nanomaterials 9, nr 7 (16.07.2019): 1019. http://dx.doi.org/10.3390/nano9071019.
Pełny tekst źródłaFujiwara, Satoko, Daiki Kawasaki, Kenji Sueyoshi, Hideaki Hisamoto i Tatsuro Endo. "Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements". Micromachines 13, nr 8 (27.07.2022): 1182. http://dx.doi.org/10.3390/mi13081182.
Pełny tekst źródłaSun, Xiaoli, Qingchuan Ye, Yi Liu, Wenqing Sun, Chi Pang, Yuechen Jia i Feng Chen. "Plasmon-enhanced Raman scattering of 2D materials via embedded silver nanoparticles in glass". Journal of Applied Physics 133, nr 8 (28.02.2023): 084304. http://dx.doi.org/10.1063/5.0138584.
Pełny tekst źródłaToftegaard, Rasmus, Jacob Arnbjerg, Huaiping Cong, Hossein Agheli, Duncan S. Sutherland i Peter R. Ogilby. "Metal nanoparticle-enhanced radiative transitions: Giving singlet oxygen emission a boost". Pure and Applied Chemistry 83, nr 4 (23.02.2011): 885–98. http://dx.doi.org/10.1351/pac-con-10-09-24.
Pełny tekst źródłaZhang, Xinping. "Plasmon extinguishment by bandedge shift identified as a second-order spectroscopic differentiation". Nanophotonics 10, nr 4 (1.01.2021): 1329–35. http://dx.doi.org/10.1515/nanoph-2020-0603.
Pełny tekst źródłaHao, Xingkai, Jean-Philippe St-Pierre, Shan Zou i Xudong Cao. "Localized surface plasmon resonance biosensor chip surface modification and signal amplifications toward rapid and sensitive detection of COVID-19 infections". Biosensors and Bioelectronics 236 (wrzesień 2023): 115421. http://dx.doi.org/10.1016/j.bios.2023.115421.
Pełny tekst źródłaYukhymchuk, V. O., V. M. Rubish, V. M. Dzhagan, O. M. Hreshchuk, O. F. Isaieva, N. V. Mazur, M. O. Durkot i in. "Surface-enhanced Raman scattering of As2S3 and Se thin films formed on Au nano-structures". Semiconductor Physics, Quantum Electronics and Optoelectronics 26, nr 1 (24.03.2023): 049–58. http://dx.doi.org/10.15407/spqeo26.01.049.
Pełny tekst źródłaVlieg, Redmar C., i John van Noort. "Multiplexed two-photon excitation spectroscopy of single gold nanorods". Journal of Chemical Physics 156, nr 9 (7.03.2022): 094201. http://dx.doi.org/10.1063/5.0073208.
Pełny tekst źródłaTariq, Sara M., Makram A. Fakhri i Uda Hashim. "Fiber Optics for Sensing Applications in a Review". Key Engineering Materials 911 (24.02.2022): 65–76. http://dx.doi.org/10.4028/p-k239ba.
Pełny tekst źródłaAdegoke, Oluwasesan, i Enoch Y. Park. "Bright luminescent optically engineered core/alloyed shell quantum dots: an ultrasensitive signal transducer for dengue virus RNA via localized surface plasmon resonance-induced hairpin hybridization". Journal of Materials Chemistry B 5, nr 16 (2017): 3047–58. http://dx.doi.org/10.1039/c7tb00388a.
Pełny tekst źródłaJeong, Hyeon-Ho, i Seung-Ki Lee. "The Method of Measurement Signal Processing of Biosensor Based on Optical Fiber Using Reflected Localized Surface Plasmon Resonance". Journal of Sensor Science and Technology 20, nr 2 (31.03.2011): 107–13. http://dx.doi.org/10.5369/jsst.2011.20.2.107.
Pełny tekst źródłaMicek, Patrik, Dusan Pudis, Peter Gaso, Jana Durisova i Daniel Jandura. "Microring Zone Structure for Near-Field Probes". Coatings 11, nr 11 (5.11.2021): 1363. http://dx.doi.org/10.3390/coatings11111363.
Pełny tekst źródłaBarrios, Carlos Angulo, Teona Mirea i Miguel Huerga Represa. "A Self-Referenced Refractive Index Sensor Based on Gold Nanoislands". Sensors 23, nr 1 (21.12.2022): 66. http://dx.doi.org/10.3390/s23010066.
Pełny tekst źródłaChen, Chien-Hsing, i Chang-Yue Chiang. "Determination of the Highly Sensitive Carboxyl-Graphene Oxide-Based Planar Optical Waveguide Localized Surface Plasmon Resonance Biosensor". Nanomaterials 12, nr 13 (22.06.2022): 2146. http://dx.doi.org/10.3390/nano12132146.
Pełny tekst źródłaAdegoke, Oluwasesan, Masahiro Morita, Tatsuya Kato, Masahito Ito, Tetsuro Suzuki i Enoch Y. Park. "Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays". Biosensors and Bioelectronics 94 (sierpień 2017): 513–22. http://dx.doi.org/10.1016/j.bios.2017.03.046.
Pełny tekst źródłaRaj, Deepti, Federico Scaglione i Paola Rizzi. "Rapid Fabrication of Fe and Pd Thin Films as SERS-Active Substrates via Dynamic Hydrogen Bubble Template Method". Nanomaterials 13, nr 1 (27.12.2022): 135. http://dx.doi.org/10.3390/nano13010135.
Pełny tekst źródłaLin, Shusen, Rutuja Mandavkar, Shalmali Burse, Md Ahasan Habib, Tasmia Khalid, Mehedi Hasan Joni, Young-Uk Chung, Sundar Kunwar i Jihoon Lee. "MoS2 Nanoplatelets on Hybrid Core-Shell (HyCoS) AuPd NPs for Hybrid SERS Platform for Detection of R6G". Nanomaterials 13, nr 4 (18.02.2023): 769. http://dx.doi.org/10.3390/nano13040769.
Pełny tekst źródłaKim, Hyeong-Min, Se-Woong Bae, Jae-Hyoung Park i Seung-Ki Lee. "Detection limit enhancement of fiber optic localized surface plasmon resonance biosensor by increased scattering efficiency and reduced background signal". Colloids and Surfaces A: Physicochemical and Engineering Aspects 629 (listopad 2021): 127439. http://dx.doi.org/10.1016/j.colsurfa.2021.127439.
Pełny tekst źródłaKim, Yelim, Ahmed Salim i Sungjoon Lim. "Millimeter-Wave-Based Spoof Localized Surface Plasmonic Resonator for Sensing Glucose Concentration". Biosensors 11, nr 10 (28.09.2021): 358. http://dx.doi.org/10.3390/bios11100358.
Pełny tekst źródłaNasrin, Fahmida, Ankan Dutta Chowdhury, Kenshin Takemura, Jaewook Lee, Oluwasesan Adegoke, Vipin Kumar Deo, Fuyuki Abe, Tetsuro Suzuki i Enoch Y. Park. "Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots". Biosensors and Bioelectronics 122 (grudzień 2018): 16–24. http://dx.doi.org/10.1016/j.bios.2018.09.024.
Pełny tekst źródłaKhosroshahi, Mohammad E., Vaughan W. Morison, Roxana Chabok, Yesha Patel i Tiam Mohmedi. "Observation and biomedical application of plasmon-enhanced fluorescence induced multiple stimulated Stokes Raman scattering in FITC-conjugated gold nanoparticles solution". Laser Physics 32, nr 10 (1.10.2022): 105601. http://dx.doi.org/10.1088/1555-6611/ac9373.
Pełny tekst źródła