Gotowa bibliografia na temat „Load sharing, Energy balancing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Load sharing, Energy balancing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Load sharing, Energy balancing"
Hossain, Md Sanwar, Khondoker Ziaul Islam, Abu Jahid, Khondokar Mizanur Rahman, Sarwar Ahmed i Mohammed H. Alsharif. "Renewable Energy-Aware Sustainable Cellular Networks with Load Balancing and Energy-Sharing Technique". Sustainability 12, nr 22 (10.11.2020): 9340. http://dx.doi.org/10.3390/su12229340.
Pełny tekst źródłaGruosso, Giambattista, i Fredy Orlando Ruiz. "Electric Vehicle Fleets as Balancing Instrument in Micro-Grids". Energies 14, nr 22 (15.11.2021): 7616. http://dx.doi.org/10.3390/en14227616.
Pełny tekst źródłaTeekaraman, Yuvaraja, K. A. Ramesh Kumar, Ramya Kuppusamy i Amruth Ramesh Thelkar. "SSNN-Based Energy Management Strategy in Grid Connected System for Load Scheduling and Load Sharing". Mathematical Problems in Engineering 2022 (10.01.2022): 1–9. http://dx.doi.org/10.1155/2022/2447299.
Pełny tekst źródłaJohn Paul Antony, T., i S. P. Victor. "Eslba Load Sharing Technique for Reputation Manager in Multiple Gateways". International Journal of Engineering & Technology 7, nr 3.34 (1.09.2018): 24. http://dx.doi.org/10.14419/ijet.v7i3.34.18709.
Pełny tekst źródłaWahid, Abdul, Javed Iqbal, Affaq Qamar, Salman Ahmed, Abdul Basit, Haider Ali i Omar M. Aldossary. "A Novel Power Scheduling Mechanism for Islanded DC Microgrid Cluster". Sustainability 12, nr 17 (25.08.2020): 6918. http://dx.doi.org/10.3390/su12176918.
Pełny tekst źródłaRaj D, Chethan, i D. N. Gaonkar. "Multiple Inverters Operated in Parallel for Proportional Load Sharing in Microgrid". International Journal of Power Electronics and Drive Systems (IJPEDS) 8, nr 2 (1.06.2017): 654. http://dx.doi.org/10.11591/ijpeds.v8.i2.pp654-666.
Pełny tekst źródłaHamidi, Meryem, Abdelhadi Raihani, Mohamed Youssfi i Omar Bouattane. "A new modular nanogrid energy management system based on multi-agent architecture". International Journal of Power Electronics and Drive Systems (IJPEDS) 13, nr 1 (1.03.2022): 178. http://dx.doi.org/10.11591/ijpeds.v13.i1.pp178-190.
Pełny tekst źródłaElgammal, Adel, i Curtis Boodoo. "Optimal Frequency stability Control Strategy for a Grid-Connected Wind/PV/FC/BESS Coordinated with Hydroelectric Power Plant Storage Energy System Using Variable Structure Control". European Journal of Energy Research 1, nr 4 (13.09.2021): 1–7. http://dx.doi.org/10.24018/ejenergy.2021.1.4.17.
Pełny tekst źródłaDemertzis, Apostolos, i Konstantinos Oikonomou. "Braided Routing Technique to Balance Traffic Load in Wireless Sensor Networks". International Journal of Monitoring and Surveillance Technologies Research 4, nr 4 (październik 2016): 1–19. http://dx.doi.org/10.4018/ijmstr.2016100101.
Pełny tekst źródłaGrover, Sakshi, i Mr Navtej Singh Ghumman. "POWER SAVING LOAD BALANCING STRATEGY USING DVFS IN CLOUD ENVIRONMENT". INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 15, nr 13 (30.11.2016): 7333–41. http://dx.doi.org/10.24297/ijct.v15i13.4801.
Pełny tekst źródłaRozprawy doktorskie na temat "Load sharing, Energy balancing"
Adams, Daniel Alan. "Optimal Load Balancing in a Beowulf Cluster". Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-050205-135758/.
Pełny tekst źródłaAntoniadis, Antonios. "Scheduling algorithms for saving energy and balancing load". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16566.
Pełny tekst źródłaThis thesis studies problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules. We also present an algorithmic framework for designing good approximation algorithms. Furthermore, we give tight bounds for the aforementioned particular class of schedules. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time. Regarding the online problem and a natural class of power functions, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available has the same competitive ratio as in the single-processor case. For Average Rate we show a competitive factor that increases by an additive constant of one compared to the single-processor result. With respect to load balancing, we consider offline load balancing on identical machines, with the objective of minimizing the current load, for temporary unit-weight jobs. The problem can be seen as coloring n intervals with k colors, such that for each point on the line, the maximal difference between the number of intervals of any two colors is minimal. We prove that a coloring with maximal difference at most one is always possible, and develop a fast polynomial-time algorithm for generating such a coloring. Lastly, we prove that two generalizations of the problem are NP-hard.
Padoin, Edson Luiz. "Energy-aware load balancing approaches to improve energy efficiency on HPC systems". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/140401.
Pełny tekst źródłaCurrent HPC systems have made more complex simulations feasible, yielding benefits to several research areas. To meet the increasing processing demands of these simulations, new equipment is being designed, aiming at the exaflops scale. A major challenge for building these systems is the power that they will require, which current perspectives reach the GigaWatts. To address this problem, this thesis presents an approach to increase the energy efficiency using of HPC resources, aiming to reduce the effects of load imbalance to save energy. We developed an energy-aware strategy, called ENERGYLB, which considers platform characteristics, and the load irregularity and dynamicity of the applications to improve the energy efficiency. Our strategy takes into account the current computational load and clock frequency, to decide whether to call a load balancing strategy that reduces load imbalance by migrating tasks, or use Dynamic Voltage and Frequency Scaling (DVFS) technique to adjust the clock frequencies of the cores according to their weighted loads. As different processor architectures can feature two levels of DVFS granularity, per-chip DVFS or per-core DVFS, we created two different algorithms for our strategy. The first one, FG-ENERGYLB, allows a fine control of the clock frequency of cores in systems that have few tens of cores and feature per-core DVFS control. On the other hand, CGENERGYLB is suitable for HPC platforms composed of several multicore processors that do not allow such a fine-grained control, i.e., that only perform per-chip DVFS. Both approaches exploit residual imbalances on iterative applications and combine dynamic load balancing with DVFS techniques. Thus, they reduce the clock frequency of underloaded computing cores, which experience some residual imbalance even after tasks are remapped. We evaluate the applicability of our approaches using the CHARM++ parallel programming system over benchmarks and real world applications. Experimental results present improvements in energy consumption and power demand over state-of-the-art algorithms. The energy savings with ENERGYLB used alone were up to 25%with our FG-ENERGYLB algorithm, and up to 27%with our CG-ENERGYLB algorithm. Nevertheless, residual imbalances were still present after tasks were remapped. In this case, when our approaches were employed together with these load balancers, an improvement in energy savings of up to 56% is achieved with FG-ENERGYLB and up to 36% with CG-ENERGYLB. These savings were obtained by exploiting residual imbalances on iterative applications. By combining dynamic load balancing with the DVFS technique, our approach is able to reduce the average power demand of parallel systems, reduce the task migration among the available resources, and keep load balancing overheads low.
Thiam, Cheikhou. "Anti load-balancing for energy-aware distributed scheduling of virtual machines". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2441/.
Pełny tekst źródłaThe multiplication of Cloud computing has resulted in the establishment of largescale data centers around the world containing thousands of compute nodes. However, Cloud consume huge amounts of energy. Energy consumption of data centers worldwide is estimated at more than 1. 5% of the global electricity use and is expected to grow further. A problem usually studied in distributed systems is to evenly distribute the load. But when the goal is to reduce energy consumption, this type of algorithms can lead to have machines largely under-loaded and therefore consuming energy unnecessarily. This thesis presents novel techniques, algorithms, and software for distributed dynamic consolidation of Virtual Machines (VMs) in Cloud. The main objective of this thesis is to provide energy-aware scheduling strategies in cloud computing for energy saving. To achieve this goal, we use centralized and decentralized approaches. Contributions in this method are presented these two axes. The objective of our approach is to reduce data center's total energy consumed by controlling cloud applications' overall energy consumption while ensuring cloud applications' service level agreement. Energy consumption is reduced by dynamically deactivating and reactivating physical nodes to meet the current resource demand. The key contributions are: - First, we present an energy aware clouds scheduling using anti-load balancing algorithm : concentrate the load on a minimum number of severs. The goal is to turn off the machines released and therefore minimize the energy consumption of the system. - The second axis proposed an algorithm which works by associating a credit value with each node. The credit of a node depends on its affinity to its jobs, its current workload and its communication behavior. Energy savings are achieved by continuous consolidation of VMs according to current utilization of resources, virtual network topologies established between VMs, and thermal state of computing nodes. The experiment results, obtained with a simulator which extends CloudSim (EnerSim), show that the cloud application energy consumption and energy efficiency are being improved. - The third axis is dedicated to the consideration of a decentralized dynamic scheduling approach entitled Cooperative scheduling Anti-load balancing Algorithm for cloud. It is a decentralized approach that allows cooperation between different sites. To validate this algorithm, we have extended the simulator MaGateSim. With an extensive experimental evaluation with a real workload dataset, we got the conclusion that both the approach using centralized and decentralized algorithms can reduce energy consumed by data centers
Gou, Changjiang. "Task Mapping and Load-balancing for Performance, Memory, Reliability and Energy". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN047.
Pełny tekst źródłaThis thesis focuses on multi-objective optimization problems arising when running scientific applications on high performance computing platforms and streaming applications on embedded systems. These optimization problems are all proven to be NP-complete, hence our efforts are mainly on designing efficient heuristics for general cases, and proposing optimal solutions for special cases.Some scientific applications are commonly modeled as rooted trees. Due to the size of temporary data, processing such a tree may exceed the local memory capacity. A practical solution on a multiprocessor system is to partition the tree into many subtrees, and run each on a processor, which is equipped with a local memory. We studied how to partition the tree into several subtrees such that each subtree fits in local memory and the makespan is minimized, when communication costs between processors are accounted for.Then, a practical work of tree scheduling arising in parallel sparse matrix solver is examined. The objective is to minimize the factorization time by exhibiting good data locality and load balancing. The proportional mapping technique is a widely used approach to solve this resource-allocation problem. It achieves good data locality by assigning the same processors to large parts of the task tree. However, it may limit load balancing in some cases. Based on proportional mapping, a dynamic scheduling algorithm is proposed. It relaxes the data locality criterion to improve load balancing. The performance of our approach has been validated by extensive experiments with the parallel sparse matrix direct solver PaStiX.Streaming applications often appear in video and audio domains. They are characterized by a series of operations on streaming data, and a high throughput. Multi-Processor System on Chip (MPSoC) is a multi/many-core embedded system that integrates many specific cores through a high speed interconnect on a single die. Such systems are widely used for multimedia applications. Lots of MPSoCs are batteries-operated. Such a tight energy budget intrinsically calls for an efficient schedule to meet the intensive computation demands. Dynamic Voltage and Frequency Scaling (DVFS) can save energy by decreasing the frequency and voltage at the price of increasing failure rates. Another technique to reduce the energy cost and meet the reliability target consists in running multiple copies of tasks. We first model applications as linear chains and study how to minimize the energy consumption under throughput and reliability constraints, using DVFS and duplication technique on MPSoC platforms.Then, in a following study, with the same optimization goal, we model streaming applications as series-parallel graphs, which are more complex than simple chains and more realistic. The target platform has a hierarchical communication system with two levels, which is common in embedded systems and high performance computing platforms. The reliability is guaranteed through either running tasks at the maximum speed or triplication of tasks. Several efficient heuristics are proposed to tackle this NP-complete optimization problem
Ibrahim, Rwan. "An energy-efficient and load-balancing cluster-based routing protocol for wireless sensor networks". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119428.
Pełny tekst źródłaLe clustering est une technique de routage populaire utilisée dans la configuration d'un réseau de capteurs sans fil. Cette technique peutétablir les paramètres de communication entre tous les nœuds du réseau pour une collecte de données plus efficace. Elle traite l'obstacle principal à la performance des réseaux de capteurs sans fil, l'efficacité énergétique, et peut être utilisée dans la reconfiguration du réseau selon le changement de conditions des nœuds. La contribution de cette thèse au domaine de routage dans les réseaux de capteurs sans fil consiste dans la présentation d'un nouvel algorithme de routage à base de clustering écoénergétique et d'équilibrage de charge (en anglais, Energy-efficient and Load-balancing Cluster-based routing algorithm ou ELC) pour les réseaux de capteurs sans fil à base de accès multiple avec écoute de porteuse. Particulièrement, les critères de distance et énergie résiduelle sont pris en considération dans la formulation de la procédure de sélection des Cluster Heads (CHs) tout en garantissant que le réseau est formé en tout temps par un nombre désirable de CHs. Outre que la distance, la taille du cluster est de même utilisée dans la formulation de la fonction du coût de la formation des clusters. Ceci vise à équilibrer la répartition de charges et l'énergie des nœuds du réseau, et par conséquence, à aboutir à une plus longue durée de vie du réseau. En outre, ELC emploie une technique de routage inter-cluster avec sauts multiples qui se base sur une approche au moindre coût qui prend en considération l'efficacité énergétique et l'équilibrage de charge dans le réseau. Les simulations démontrent que ELC consomme moins d'énergie et aboutit à une plus longue durée de vie du réseau par rapport à d'autres algorithmes de routage à base de clustering comme LEACH-C et CBCDACP.
Antoniadis, Antonios [Verfasser], Susanne [Akademischer Betreuer] Albers, Christoph [Akademischer Betreuer] Dürr i Andrzej [Akademischer Betreuer] Lingas. "Scheduling algorithms for saving energy and balancing load / Antonios Antoniadis. Gutachter: Susanne Albers ; Christoph Dürr ; Andrzej Lingas". Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://d-nb.info/1025291131/34.
Pełny tekst źródłaBroberg, James Andrew, i james@broberg com au. "Effective task assignment strategies for distributed systems under highly variable workloads". RMIT University. Computer Science and Information Technology, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080130.150130.
Pełny tekst źródłaChan, Kristen Y. "MULTIPLE INPUT SINGLE OUTPUT CONVERTER WITH UNEVEN LOAD SHARING CONTROL FOR IMPROVED SYSTEM EFFICIENCY". DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2139.
Pełny tekst źródłaPatrick, Stasha Noelle. "Control of aggregate electric water heaters for load shifting and balancing intermittent renewable energy generation in a smart grid environment". Thesis, Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/patrick/PatrickS1211.pdf.
Pełny tekst źródłaCzęści książek na temat "Load sharing, Energy balancing"
Jia, Junbo. "Load and Energy Sharing Mechanism". W Modern Earthquake Engineering, 783–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-31854-2_25.
Pełny tekst źródłaCabrera, Alberto, Alejandro Acosta, Francisco Almeida i Vicente Blanco. "Energy Efficient Dynamic Load Balancing over MultiGPU Heterogeneous Systems". W Parallel Processing and Applied Mathematics, 123–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78054-2_12.
Pełny tekst źródłaHuang, Weihua, Zhong Ma, Xinfa Dai, Mingdi Xu i Yi Gao. "QoS-aware adaptive load-balancing algorithm for virtual clusters". W Advances in Energy Science and Equipment Engineering II, 1839–46. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116174-190.
Pełny tekst źródłaNabi, Ausaaf, Ira Joshi i Sonal Linda. "Effective Load Balancing and Load Sharing in Multi-access Edge Computing for Extreme Network Congestion". W Lecture Notes in Networks and Systems, 119–29. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9228-5_11.
Pełny tekst źródłaLi, Xiao, i Mingchun Zheng. "An Energy-Saving Load Balancing Method in Cloud Data Centers". W Lecture Notes in Electrical Engineering, 365–73. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7618-0_35.
Pełny tekst źródłaGowri, V., i B. Baranidharan. "Dynamic Energy Efficient Load Balancing Approach in Fog Computing Environment". W Intelligent Communication Technologies and Virtual Mobile Networks, 145–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1844-5_13.
Pełny tekst źródłaJoosen, Wouter, Stijn Bijnens, Bert Robben, Johan Van Oeyen i Pierre Verbaeten. "Flexible load balancing software for parallel applications in a time-sharing environment". W High-Performance Computing and Networking, 398–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0046659.
Pełny tekst źródłaGutiérrez-Martín, Fernando. "Pre-Investigation of Hydrogen Technologies at Large Scales for Electric Grid Load Balancing". W Transition to Renewable Energy Systems, 217–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527673872.ch13.
Pełny tekst źródłaSampayo, Sebastian L., Julien Montavont i Thomas Noël. "eLoBaPS: Towards Energy Load Balancing with Wake-Up Radios for IoT". W Ad-Hoc, Mobile, and Wireless Networks, 388–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31831-4_27.
Pełny tekst źródłaPadoin, Edson L., Laércio L. Pilla, Márcio Castro, Philippe O. A. Navaux i Jean-François Méhaut. "Exploration of Load Balancing Thresholds to Save Energy on Iterative Applications". W Communications in Computer and Information Science, 76–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57972-6_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Load sharing, Energy balancing"
Zhang, Zhe, Donghan Shi, Chi Jin, Leong Hai Koh, Fook Hoong Choo, Peng Wang i Yi Tang. "Droop control of a bipolar dc microgrid for load sharing and voltage balancing". W 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia). IEEE, 2017. http://dx.doi.org/10.1109/ifeec.2017.7992141.
Pełny tekst źródłaSigurgeirsson, Hersir. "Parallel Computing Issues in a Particle-Continuum Model for Two-Phase Flows". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0992.
Pełny tekst źródłaBotros, K. K., H. Golshan, A. Hawryluk i B. Sloof. "Optimization of Power Train Involving Gas Turbine Driven Compressors and Aerial Coolers". W ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46841.
Pełny tekst źródłaAltman, Eitan, Urtzi Ayesta i Balakrishna Prabhu. "Load Balancing in Processor Sharing Systems". W 3rd International ICST Conference on Performance Evaluation Methodologies and Tools. ICST, 2008. http://dx.doi.org/10.4108/icst.valuetools2008.4462.
Pełny tekst źródłaNancy, J. Joys, Tamil Mani S., S. Rohith, S. Saranraj i T. Vigneswaran. "Load Balancing using Load Sharing Technique in Distribution System". W 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020. http://dx.doi.org/10.1109/icaccs48705.2020.9074304.
Pełny tekst źródłaBhatt, Hiren H., i Hitesh A. Bheda. "Enhance load balancing using Flexible load sharing in cloud computing". W 2015 1st International Conference on Next Generation Computing Technologies (NGCT). IEEE, 2015. http://dx.doi.org/10.1109/ngct.2015.7375085.
Pełny tekst źródła"RESOURCE SHARING AND LOAD BALANCING BASED ON AGENT MOBILITY". W 6th International Conference on Enterprise Information Systems. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0002601303500355.
Pełny tekst źródłaLeino, Juha. "Approximating Optimal Load Balancing Policy in Discriminatory Processor Sharing Systems". W 2nd International ICST Conference on Performance Evaluation Methodologies and Tools. ICST, 2007. http://dx.doi.org/10.4108/smctools.2007.1929.
Pełny tekst źródłaBradley, Donovan, i R. N. Uma. "Energy-efficient routing through Weighted Load Balancing". W GLOBECOM 2012 - 2012 IEEE Global Communications Conference. IEEE, 2012. http://dx.doi.org/10.1109/glocom.2012.6503086.
Pełny tekst źródłaMielczarski, Wladyslaw. "Impact of Energy Storage on Load Balancing". W 2018 15th International Conference on the European Energy Market (EEM). IEEE, 2018. http://dx.doi.org/10.1109/eem.2018.8469889.
Pełny tekst źródłaRaporty organizacyjne na temat "Load sharing, Energy balancing"
Fowler. L51754 Field Application of Electronic Gas Admission with Cylinder Pressure Feedback for LB Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1996. http://dx.doi.org/10.55274/r0010363.
Pełny tekst źródłaCahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien i Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, listopad 2014. http://dx.doi.org/10.32747/2014.7699855.bard.
Pełny tekst źródła