Artykuły w czasopismach na temat „Living Cells - Fluorescence Correlation Spectroscopy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Living Cells - Fluorescence Correlation Spectroscopy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kim, Sally A., Katrin G. Heinze i Petra Schwille. "Fluorescence correlation spectroscopy in living cells". Nature Methods 4, nr 11 (30.10.2007): 963–73. http://dx.doi.org/10.1038/nmeth1104.
Pełny tekst źródłaBacia, Kirsten, Sally A. Kim i Petra Schwille. "Fluorescence cross-correlation spectroscopy in living cells". Nature Methods 3, nr 2 (23.01.2006): 83–89. http://dx.doi.org/10.1038/nmeth822.
Pełny tekst źródłaKinjo, M., H. Sakata i S. Mikuni. "First Steps for Fluorescence Correlation Spectroscopy of Living Cells". Cold Spring Harbor Protocols 2011, nr 10 (1.10.2011): pdb.top065920. http://dx.doi.org/10.1101/pdb.top065920.
Pełny tekst źródłaUnsay, Joseph D., i Ana J. Garcia-Saez. "Scanning Fluorescence Correlation Spectroscopy in Mitochondria of Living Cells". Biophysical Journal 106, nr 2 (styczeń 2014): 196a. http://dx.doi.org/10.1016/j.bpj.2013.11.1160.
Pełny tekst źródłaHo Hur, Kwang, John Kohler i Joachim D. Mueller. "Unbiased Fluorescence Correlation Spectroscopy of Diffusive Processes in Living Cells". Biophysical Journal 120, nr 3 (luty 2021): 357a. http://dx.doi.org/10.1016/j.bpj.2020.11.2210.
Pełny tekst źródłaWeiss, Matthias. "Probing the Interior of Living Cells with Fluorescence Correlation Spectroscopy". Annals of the New York Academy of Sciences 1130, nr 1 (maj 2008): 21–27. http://dx.doi.org/10.1196/annals.1430.002.
Pełny tekst źródłaMarkiewicz, Roksana, Jagoda Litowczenko, Jacek Gapiński, Anna Woźniak, Stefan Jurga i Adam Patkowski. "Nanomolar Nitric Oxide Concentrations in Living Cells Measured by Means of Fluorescence Correlation Spectroscopy". Molecules 27, nr 3 (2.02.2022): 1010. http://dx.doi.org/10.3390/molecules27031010.
Pełny tekst źródłaEngelke, Hanna, Doris Heinrich i Joachim O. Rädler. "Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy". Physical Biology 7, nr 4 (1.12.2010): 046014. http://dx.doi.org/10.1088/1478-3975/7/4/046014.
Pełny tekst źródłaMartinez, Michelle M., Randall D. Reif i Dimitri Pappas. "Early detection of apoptosis in living cells by fluorescence correlation spectroscopy". Analytical and Bioanalytical Chemistry 396, nr 3 (25.11.2009): 1177–85. http://dx.doi.org/10.1007/s00216-009-3298-3.
Pełny tekst źródłaGao, Xinwei, Yanfeng Liu, Jia Zhang, Luwei Wang, Yong Guo, Yinru Zhu, Zhigang Yang, Wei Yan i Junle Qu. "Nanodrug Transmembrane Transport Research Based on Fluorescence Correlation Spectroscopy". Membranes 11, nr 11 (19.11.2021): 891. http://dx.doi.org/10.3390/membranes11110891.
Pełny tekst źródłaGuan, Yinghua, Matthias Meurer, Sarada Raghavan, Aleksander Rebane, Jake R. Lindquist, Sofia Santos, Ilia Kats i in. "Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein". Molecular Biology of the Cell 26, nr 11 (czerwiec 2015): 2054–66. http://dx.doi.org/10.1091/mbc.e14-10-1473.
Pełny tekst źródłaOHSUGI, Y., i MASATAKA KINJO. "ANALYSIS OF MEMBRANE-BINDING PROTEIN MOBILITY IN LIVING CELLS USING TOTAL INTERNAL REFLECTION FLUORESCENCE CORRELATION SPECTROSCOPY". Biophysical Reviews and Letters 01, nr 03 (lipiec 2006): 293–99. http://dx.doi.org/10.1142/s1793048006000227.
Pełny tekst źródłaAoki, Kazuhiro. "Quantification of dissociation constant in living cells by fluorescence cross-correlation spectroscopy". Folia Pharmacologica Japonica 147, nr 2 (2016): 74–79. http://dx.doi.org/10.1254/fpj.147.74.
Pełny tekst źródłaWeiss, Matthias, Hitoshi Hashimoto i Tommy Nilsson. "Anomalous Protein Diffusion in Living Cells as Seen by Fluorescence Correlation Spectroscopy". Biophysical Journal 84, nr 6 (czerwiec 2003): 4043–52. http://dx.doi.org/10.1016/s0006-3495(03)75130-3.
Pełny tekst źródłaKarpińska, Aneta, Marta Pilz, Joanna Buczkowska, Paweł J. Żuk, Karolina Kucharska, Gaweł Magiera, Karina Kwapiszewska i Robert Hołyst. "Quantitative analysis of biochemical processes in living cells at a single-molecule level: a case of olaparib–PARP1 (DNA repair protein) interactions". Analyst 146, nr 23 (2021): 7131–43. http://dx.doi.org/10.1039/d1an01769a.
Pełny tekst źródłaWachsmuth, Malte, Christian Conrad, Jutta Bulkescher, Birgit Koch, Robert Mahen, Mayumi Isokane, Rainer Pepperkok i Jan Ellenberg. "High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells". Nature Biotechnology 33, nr 4 (16.03.2015): 384–89. http://dx.doi.org/10.1038/nbt.3146.
Pełny tekst źródłaHui, Yuen Yung, Bailin Zhang, Yuan-Chang Chang, Cheng-Chun Chang, Huan-Cheng Chang, Jui-Hung Hsu, Karen Chang i Fu-Hsiung Chang. "Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells". Optics Express 18, nr 6 (10.03.2010): 5896. http://dx.doi.org/10.1364/oe.18.005896.
Pełny tekst źródłaSpiegel, Evan T., P. Lee, L. Toth i W. R. Zipfel. "Studying Fluorescent Proteins in Living Cells: An Application for Segmented Fluorescence Correlation Spectroscopy". Biophysical Journal 98, nr 3 (styczeń 2010): 584a. http://dx.doi.org/10.1016/j.bpj.2009.12.3176.
Pełny tekst źródłaFujita, Hirotaka, Ryota Oikawa, Mayu Hayakawa, Fumiaki Tomoike, Yasuaki Kimura, Hiroyuki Okuno, Yoshiki Hatashita i in. "Quantification of native mRNA dynamics in living neurons using fluorescence correlation spectroscopy and reduction-triggered fluorescent probes". Journal of Biological Chemistry 295, nr 23 (27.04.2020): 7923–40. http://dx.doi.org/10.1074/jbc.ra119.010921.
Pełny tekst źródłaPetrich, Annett, Amit Koikkarah Aji, Valentin Dunsing i Salvatore Chiantia. "Benchmarking of novel green fluorescent proteins for the quantification of protein oligomerization in living cells". PLOS ONE 18, nr 8 (3.08.2023): e0285486. http://dx.doi.org/10.1371/journal.pone.0285486.
Pełny tekst źródłaYao, Jun, Xiangyi Huang i Jicun Ren. "In situ determination of secretory kinase Fam20C from living cells using fluorescence correlation spectroscopy". Talanta 232 (wrzesień 2021): 122473. http://dx.doi.org/10.1016/j.talanta.2021.122473.
Pełny tekst źródłaMalchus, Nina, i Matthias Weiss. "Elucidating Anomalous Protein Diffusion in Living Cells with Fluorescence Correlation Spectroscopy—Facts and Pitfalls". Journal of Fluorescence 20, nr 1 (7.07.2009): 19–26. http://dx.doi.org/10.1007/s10895-009-0517-4.
Pełny tekst źródłaBraet, Christophe, Holger Stephan, Ian M. Dobbie, Denisio M. Togashi, Alan G. Ryder, Zeno Földes-Papp, Noel Lowndes i Heinz Peter Nasheuer. "Mobility and distribution of replication protein A in living cells using fluorescence correlation spectroscopy". Experimental and Molecular Pathology 82, nr 2 (kwiecień 2007): 156–62. http://dx.doi.org/10.1016/j.yexmp.2006.12.008.
Pełny tekst źródłaNederveen-Schippers, Laura M., Pragya Pathak, Ineke Keizer-Gunnink, Adrie H. Westphal, Peter J. M. van Haastert, Jan Willem Borst, Arjan Kortholt i Victor Skakun. "Combined FCS and PCH Analysis to Quantify Protein Dimerization in Living Cells". International Journal of Molecular Sciences 22, nr 14 (7.07.2021): 7300. http://dx.doi.org/10.3390/ijms22147300.
Pełny tekst źródłaDeng, Liyun, Xiangyi Huang, Chaoqing Dong i Jicun Ren. "Simultaneously monitoring endogenous MAPK members in single living cells by multi-channel fluorescence correlation spectroscopy". Analyst 146, nr 8 (2021): 2581–90. http://dx.doi.org/10.1039/d1an00090j.
Pełny tekst źródłaPolitz, J. C., E. S. Browne, D. E. Wolf i T. Pederson. "Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells". Proceedings of the National Academy of Sciences 95, nr 11 (26.05.1998): 6043–48. http://dx.doi.org/10.1073/pnas.95.11.6043.
Pełny tekst źródłaNeugart, Felix, Andrea Zappe, Deborah M. Buk, Inna Ziegler, Steffen Steinert, Monika Schumacher, Eva Schopf i in. "Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy". Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, nr 9 (wrzesień 2009): 1890–900. http://dx.doi.org/10.1016/j.bbamem.2009.05.013.
Pełny tekst źródłaWeidemann, Thomas, Malte Wachsmuth, Tobias A. Knoch, Gabriele Müller, Waldemar Waldeck i Jörg Langowski. "Counting Nucleosomes in Living Cells with a Combination of Fluorescence Correlation Spectroscopy and Confocal Imaging". Journal of Molecular Biology 334, nr 2 (listopad 2003): 229–40. http://dx.doi.org/10.1016/j.jmb.2003.08.063.
Pełny tekst źródłaPaulson, Bjorn, Yeonhee Shin, Akimitsu Okamoto, Yeon-Mok Oh, Jun Ki Kim i Chan-Gi Pack. "Poly(A)+ Sensing of Hybridization-Sensitive Fluorescent Oligonucleotide Probe Characterized by Fluorescence Correlation Methods". International Journal of Molecular Sciences 22, nr 12 (16.06.2021): 6433. http://dx.doi.org/10.3390/ijms22126433.
Pełny tekst źródłaTiwari, Manisha, Shintaro Mikuni i Masataka Kinjo. "2P293 Determination of dissociation constants of NFκB p50/p65 heterodimer using fluorescence cross-correlation spectroscopy in the living cell(27. Bioimaging,Poster)". Seibutsu Butsuri 53, supplement1-2 (2013): S207. http://dx.doi.org/10.2142/biophys.53.s207_4.
Pełny tekst źródłaLarson, Daniel R., Yu May Ma, Volker M. Vogt i Watt W. Webb. "Direct measurement of Gag–Gag interaction during retrovirus assembly with FRET and fluorescence correlation spectroscopy". Journal of Cell Biology 162, nr 7 (29.09.2003): 1233–44. http://dx.doi.org/10.1083/jcb.200303200.
Pełny tekst źródłaSchwille, Petra, Ulrich Haupts, Sudipta Maiti i Watt W. Webb. "Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation". Biophysical Journal 77, nr 4 (październik 1999): 2251–65. http://dx.doi.org/10.1016/s0006-3495(99)77065-7.
Pełny tekst źródłaFukuda, Takafumi, Shigeko Kawai-Noma, Chan-Gi Pack i Hideki Taguchi. "Large-scale analysis of diffusional dynamics of proteins in living yeast cells using fluorescence correlation spectroscopy". Biochemical and Biophysical Research Communications 520, nr 2 (grudzień 2019): 237–42. http://dx.doi.org/10.1016/j.bbrc.2019.09.066.
Pełny tekst źródłaTudor, Cicerone, Jérôme N. Feige, Harikishore Pingali, Vidya Bhushan Lohray, Walter Wahli, Béatrice Desvergne, Yves Engelborghs i Laurent Gelman. "Association with Coregulators Is the Major Determinant Governing Peroxisome Proliferator-activated Receptor Mobility in Living Cells". Journal of Biological Chemistry 282, nr 7 (12.12.2006): 4417–26. http://dx.doi.org/10.1074/jbc.m608172200.
Pełny tekst źródłaBates, Ian R., Paul W. Wiseman i John W. Hanrahan. "Investigating membrane protein dynamics in living cellsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease." Biochemistry and Cell Biology 84, nr 6 (grudzień 2006): 825–31. http://dx.doi.org/10.1139/o06-189.
Pełny tekst źródłaWiseman, P. W., J. C. Bouwer, S. Peltier i M. H. Ellisman. "High Speed Two Photon Excitation Microscopy in Live Cell Imaging using Image Correlation Spectroscopy (ICS)". Microscopy and Microanalysis 7, S2 (sierpień 2001): 22–23. http://dx.doi.org/10.1017/s1431927600026180.
Pełny tekst źródłaSmoyer, Christine J., Santharam S. Katta, Jennifer M. Gardner, Lynn Stoltz, Scott McCroskey, William D. Bradford, Melainia McClain i in. "Analysis of membrane proteins localizing to the inner nuclear envelope in living cells". Journal of Cell Biology 215, nr 4 (9.11.2016): 575–90. http://dx.doi.org/10.1083/jcb.201607043.
Pełny tekst źródłaPrasai, Avishek, Marketa Schmidt Cernohorska, Klara Ruppova, Veronika Niederlova, Monika Andelova, Peter Draber, Ondrej Stepanek i Martina Huranova. "The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells". Journal of Biological Chemistry 295, nr 42 (5.08.2020): 14279–90. http://dx.doi.org/10.1074/jbc.ra120.013905.
Pełny tekst źródłaOhsugi, Yu, Kenta Saito, Mamoru Tamura i Masataka Kinjo. "Lateral Mobility of Membrane-Binding Proteins in Living Cells Measured by Total Internal Reflection Fluorescence Correlation Spectroscopy". Biophysical Journal 91, nr 9 (listopad 2006): 3456–64. http://dx.doi.org/10.1529/biophysj.105.074625.
Pełny tekst źródłaDu, Zhixue, Chaoqing Dong i Jicun Ren. "A study of the dynamics of PTEN proteins in living cells using in vivo fluorescence correlation spectroscopy". Methods and Applications in Fluorescence 5, nr 2 (28.04.2017): 024008. http://dx.doi.org/10.1088/2050-6120/aa6b07.
Pełny tekst źródłaWinckler, Pascale, Aurélie Cailler, Régis Deturche, Pierre Jeannesson, Hamid Morjani i Rodolphe Jaffiol. "Microfluidity mapping using fluorescence correlation spectroscopy: A new way to investigate plasma membrane microorganization of living cells". Biochimica et Biophysica Acta (BBA) - Biomembranes 1818, nr 11 (listopad 2012): 2477–85. http://dx.doi.org/10.1016/j.bbamem.2012.05.018.
Pełny tekst źródłaUnsay, Joseph D., Fabronia Murad, Eduard Hermann, Jonas Ries i Ana J. García-Sáez. "Scanning Fluorescence Correlation Spectroscopy for Quantification of the Dynamics and Interactions in Tube Organelles of Living Cells". ChemPhysChem 19, nr 23 (18.10.2018): 3273–78. http://dx.doi.org/10.1002/cphc.201800705.
Pełny tekst źródłaHayakawa, Eri H., Michiko Furutani, Rumiko Matsuoka i Yuichi Takakuwa. "Comparison of protein behavior between wild-type and G601S hERG in living cells by fluorescence correlation spectroscopy". Journal of Physiological Sciences 61, nr 4 (15.05.2011): 313–19. http://dx.doi.org/10.1007/s12576-011-0150-2.
Pełny tekst źródłaKilpatrick, Laura E., i Stephen J. Hill. "The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors". Biochemical Society Transactions 44, nr 2 (11.04.2016): 624–29. http://dx.doi.org/10.1042/bst20150285.
Pełny tekst źródłaDunsing, Valentin, Magnus Mayer, Filip Liebsch, Gerhard Multhaup i Salvatore Chiantia. "Direct evidence of amyloid precursor–like protein 1 trans interactions in cell–cell adhesion platforms investigated via fluorescence fluctuation spectroscopy". Molecular Biology of the Cell 28, nr 25 (grudzień 2017): 3609–20. http://dx.doi.org/10.1091/mbc.e17-07-0459.
Pełny tekst źródłaDi Bona, Melody, Simone Pelicci, Isotta Cainero, Giuseppe Vicidomini, Davide Mazza, Michael A. Mancini, Alberto Diaspro i Luca Lanzano'. "Intensity Sorted Fluorescence Correlation Spectroscopy: A Novel Method to Probe Nuclear Dynamics and Chromatin Organization in Living Cells". Biophysical Journal 116, nr 3 (luty 2019): 72a. http://dx.doi.org/10.1016/j.bpj.2018.11.429.
Pełny tekst źródłaLarson, Daniel R., Julie A. Gosse, David A. Holowka, Barbara A. Baird i Watt W. Webb. "Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells". Journal of Cell Biology 171, nr 3 (7.11.2005): 527–36. http://dx.doi.org/10.1083/jcb.200503110.
Pełny tekst źródłaOhsugi, Yu, Mamoru Tamura i Masataka Kinjo. "2P523 Molecular dynamics of membrane-binding protein in living cells analyzed by total internal reflection fluorescence correlation spectroscopy(52. Bio-imaging,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S426. http://dx.doi.org/10.2142/biophys.46.s426_3.
Pełny tekst źródłaOhrt, Thomas, Wolfgang Staroske, Jörg Mütze, Karin Crell, Markus Landthaler i Petra Schwille. "Fluorescence Cross-Correlation Spectroscopy Reveals Mechanistic Insights into the Effect of 2′-O-Methyl Modified siRNAs in Living Cells". Biophysical Journal 100, nr 12 (czerwiec 2011): 2981–90. http://dx.doi.org/10.1016/j.bpj.2011.05.005.
Pełny tekst źródłaDawes, Michael L., Christian Soeller i Steffen Scholpp. "Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo". Histochemistry and Cell Biology 154, nr 5 (16.10.2020): 507–19. http://dx.doi.org/10.1007/s00418-020-01930-5.
Pełny tekst źródła