Gotowa bibliografia na temat „Live Cell Imaging Biosensors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Live Cell Imaging Biosensors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Live Cell Imaging Biosensors"
Yoon, Sangpil, Yijia Pan, Kirk Shung i Yingxiao Wang. "FRET-Based Ca2+ Biosensor Single Cell Imaging Interrogated by High-Frequency Ultrasound". Sensors 20, nr 17 (3.09.2020): 4998. http://dx.doi.org/10.3390/s20174998.
Pełny tekst źródłaSnell, Nicole, Vishnu Rao, Kendra Seckinger, Junyi Liang, Jenna Leser, Allison Mancini i M. Rizzo. "Homotransfer FRET Reporters for Live Cell Imaging". Biosensors 8, nr 4 (11.10.2018): 89. http://dx.doi.org/10.3390/bios8040089.
Pełny tekst źródłaSecilmis, Melike, Hamza Yusuf Altun, Johannes Pilic, Yusuf Ceyhun Erdogan, Zeynep Cokluk, Busra Nur Ata, Gulsah Sevimli i in. "A Co-Culture-Based Multiparametric Imaging Technique to Dissect Local H2O2 Signals with Targeted HyPer7". Biosensors 11, nr 9 (14.09.2021): 338. http://dx.doi.org/10.3390/bios11090338.
Pełny tekst źródłaTiruthani, Karthik, Adam Mischler, Shoeb Ahmed, Jessica Mahinthakumar, Jason M. Haugh i Balaji M. Rao. "Design and evaluation of engineered protein biosensors for live-cell imaging of EGFR phosphorylation". Science Signaling 12, nr 584 (4.06.2019): eaap7584. http://dx.doi.org/10.1126/scisignal.aap7584.
Pełny tekst źródłaHouser, Mei CQ, Steven S. Hou, Florian Perrin, Yuliia Turchyna, Brian J. Bacskai, Oksana Berezovska i Masato Maesako. "A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells". Sensors 20, nr 21 (22.10.2020): 5980. http://dx.doi.org/10.3390/s20215980.
Pełny tekst źródłaWoehler, Andrew. "Simultaneous Quantitative Live Cell Imaging of Multiple FRET-Based Biosensors". PLoS ONE 8, nr 4 (16.04.2013): e61096. http://dx.doi.org/10.1371/journal.pone.0061096.
Pełny tekst źródłaVilchez Mercedes, Samuel A., Ian Eder, Mona Ahmed, Ninghao Zhu i Pak Kin Wong. "Optimizing locked nucleic acid modification in double-stranded biosensors for live single cell analysis". Analyst 147, nr 4 (2022): 722–33. http://dx.doi.org/10.1039/d1an01802g.
Pełny tekst źródłaBanerjee, Swayoma, Luis Rene Garcia i Wayne K. Versaw. "Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants". Microscopy and Microanalysis 22, nr 2 (16.02.2016): 300–310. http://dx.doi.org/10.1017/s143192761600012x.
Pełny tekst źródłaDobrzyński, Maciej, Marc-Antoine Jacques i Olivier Pertz. "Mining single-cell time-series datasets with Time Course Inspector". Bioinformatics 36, nr 6 (14.11.2019): 1968–69. http://dx.doi.org/10.1093/bioinformatics/btz846.
Pełny tekst źródłaValetdinova, Kamila R., Tuyana B. Malankhanova, Suren M. Zakian i Sergey P. Medvedev. "The Cutting Edge of Disease Modeling: Synergy of Induced Pluripotent Stem Cell Technology and Genetically Encoded Biosensors". Biomedicines 9, nr 8 (5.08.2021): 960. http://dx.doi.org/10.3390/biomedicines9080960.
Pełny tekst źródłaRozprawy doktorskie na temat "Live Cell Imaging Biosensors"
Konishi, Yoshinobu. "Live-cell FRET imaging reveals a role of extracellular signal-regulated kinase activity dynamics in thymocyte motility". Kyoto University, 2019. http://hdl.handle.net/2433/242374.
Pełny tekst źródłaHung, Yin Pun. "Single Cell Imaging of Metabolism with Fluorescent Biosensors". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10147.
Pełny tekst źródłaKosmacek, Elizabeth Anne Ianzini Fiorenza Mackey Michael A. "Live cell imaging technology development for cancer research". [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/388.
Pełny tekst źródłaChyan, Wen Ph D. Massachusetts Institute of Technology. "Fluorogenic probes for live-cell imaging of biomolecules". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118216.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 231-249).
Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are essential tools for chemical biology. Probes that detect enzymatic activity can be used to illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. This dissertation describes the development of new fluorophore chemistries to expand our current fluorogenic probe toolkit and the subsequent application of these probes to study dynamic cell transport processes. Chapter 1. Enzyme-Activated Fluorogenic Probes for Live-Cell and In Vivo Imaging. Chapter 1 reviews recent advances in enzyme-activated fluorogenic probes for biological imaging, organized by enzyme classification. This review surveys recent masking strategies, different modes of enzymatic activation, and the breadth of current and future probe applications. Key challenges, such as probe selectivity and spectroscopic requirements, are described in this chapter along with therapeutic and diagnostic opportunities that can be accessed by surmounting these challenges. Chapter 2. Electronic and Steric Optimization of Fluorogenic Probes for Biomolecular Imaging. In many fluorogenic probes, the intrinsic fluorescence of a small-molecule fluorophore is masked by ester masking groups until entry into a cell, where endogenous esterases catalyze the hydrolysis of esters, generating fluorescence. The susceptibility of masking groups to spontaneous hydrolysis is a major limitation of these probes. Previous attempts to address this problem have incorporated auto-immolative linkers at the cost of atom economy and synthetic adversity. In this chapter, I report on a linker-free strategy that employs adventitious electronic and steric interactions in easy-to-synthesize probes. I find that halogen-carbonyl n-->[pi]* interactions and acyl group size are optimized in 2',7'-dichlorofluorescein diisobutyrate. This probe is relatively stable to spontaneous hydrolysis but is a highly reactive substrate for esterases both in vitro and in cellulo, yielding a bright, photostable fluorogenic probe with utility in biomolecular imaging. Chapter 3. Cellular Uptake of Large Monofunctionalized Dextrans. Dextrans are a versatile class of polysaccharides with applications that span medicine, cell biology, food science, and consumer goods. In Chapter 3, I apply the electronically stabilized probe described in Chapter 2 to study the cellular uptake of a new type of large monofunctionalized dextran that exhibits unusual properties: efficient cytosolic and nuclear uptake. This dextran permeates various human cell types without the use of transfection agents, electroporation, or membrane perturbation. Cellular uptake occurs primarily through active transport via receptor-mediated processes. These monofunctionalized dextrans could serve as intracellular delivery platforms for drugs or other cargos. Chapter 4. Paired Nitroreductase-Probe System to Quantify the Cytosolic Delivery of Biomolecules. Cytosolic delivery of large biomolecules is a significant barrier to therapeutic applications of CRISPR, RNAi, and biologics such as proteins with anticancer properties. In Chapter 4, I describe a new paired enzyme-probe system to quantify cytosolic delivery of biomolecules-a valuable resource for elucidating mechanistic details and improving delivery of therapeutics. I designed and optimized a nitroreductase fusion protein that embeds in the cytosolic face of outer mitochondrial membranes, providing several key improvements over unanchored reporter enzymes. In parallel, I prepared and assessed a panel of nitroreductase-activated probes for favorable spectroscopic and enzymatic activation properties. Together, the nitroreductase fusion protein and fluorogenic probes provide a rapid, generalizable tool that is well-poised to quantify cytosolic delivery of biomolecules. Chapter 5. Future Directions. This chapter outlines several future directions for expanding the scope of fluorogenic probes and developing new biological applications. Additionally, Chapter 5 is followed by an appendix describing a tunable rhodol fluorophore scaffold for improved spectroscopic properties and versatility. Overall, the work described in this thesis illustrates the power of enzyme-activated fluorogenic probes to provide fresh insight into dynamic biological processes, with direct implications for improved therapeutic delivery.
by Wen Chyan.
Ph. D. in Biological Chemistry
Büchele, Benjamin. "Live Cell Imaging des Hepatitis C Virus Replikationskomplexes". [S.l. : s.n.], 2004. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-59102.
Pełny tekst źródłaKosmacek, Elizabeth Anne. "Live cell imaging technology development for cancer research". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/388.
Pełny tekst źródłaCaporale, Chiara. "Luminescent Iridium Tetrazolato Markers for Live Cell Imaging". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/70386.
Pełny tekst źródłaDanylchuk, Dmytro. "Environment-sensitive targeted fluorescent probes for live-cell imaging". Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAF012.
Pełny tekst źródłaSpecific targeting, imaging and probing of cell plasma membranes and intracellular organelles can be addressed by rationally designed polarity-sensitive fluorescent probes. Here, a new efficient plasma membrane-targeting moiety was developed and tested in five cyanine dyes, showing excellent performance in cellular and in vivo microscopy. Next, the targeting moiety was grafted to a solvatochromic dye Prodan, yielding a plasma membrane probe with high lipid order sensitivity. Modifying a Nile Red using the moieties with varied alkyl chain lengths resulted in two solvatochromic plasma membrane probes: NR12A with high affinity to membranes for conventional microscopy, and NR4A, a low-affinity probe for PAINT super-resolution microscopy. Tethering Nile Red with organelle-targeted groups yielded an array of probes, able to sense polarity and lipid order in organelle membranes. The synthesized probes will find applications in bioimaging, cell biology, biophysics or mechanobiology
Sörman, Paulsson Elsa. "Evaluation of In-Silico Labeling for Live Cell Imaging". Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-180590.
Pełny tekst źródłaHan, Hongqing. "Towards accurate and efficient live cell imaging data analysis". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22324.
Pełny tekst źródłaLive cell imaging based on time-lapse microscopy has been used to study dynamic cellular behaviors, such as cell cycle, cell signaling and transcription. Extracting cell lineage trees out of a time-lapse video requires cell segmentation and cell tracking. For long term live cell imaging, data analysis errors are particularly fatal. Even an extremely low error rate could potentially be amplified by the large number of sampled time points and render the entire video useless. In this work, we adopt a straightforward but practical design that combines the merits of manual and automatic approaches. We present a live cell imaging data analysis tool `eDetect', which uses post-editing to complement automatic segmentation and tracking. What makes this work special is that eDetect employs multiple interactive data visualization modules to guide and assist users, making the error detection and correction procedure rational and efficient. Specifically, two scatter plots and a heat map are used to interactively visualize single cells' visual features. The scatter plots position similar results in close vicinity, making it easy to spot and correct a large group of similar errors with a few mouse clicks, minimizing repetitive human interventions. The heat map is aimed at exposing all overlooked errors and helping users progressively approach perfect accuracy in cell lineage reconstruction. Quantitative evaluation proves that eDetect is able to largely improve accuracy within an acceptable time frame, and its performance surpasses the winners of most tasks in the `Cell Tracking Challenge', as measured by biologically relevant metrics.
Książki na temat "Live Cell Imaging Biosensors"
Kim, Sung-Bae, red. Live Cell Imaging. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1258-3.
Pełny tekst źródłaPapkovsky, Dmitri B., red. Live Cell Imaging. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-404-3.
Pełny tekst źródłaLive cell imaging: Methods and protocols. New York, NY: Humana Press, 2010.
Znajdź pełny tekst źródła1939-, Goldman Robert D., Swedlow Jason i Spector David L, red. Live cell imaging: A laboratory manual. Wyd. 2. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2010.
Znajdź pełny tekst źródłaLive cell imaging: A laboratory manual. Wyd. 2. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2010.
Znajdź pełny tekst źródła1939-, Goldman Robert D., Swedlow Jason i Spector David L, red. Live cell imaging: A laboratory manual. Wyd. 2. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2010.
Znajdź pełny tekst źródłaMasters, Barry R. Confocal microscopy and multiphoton excitation microscopy: The genesis of live cell imaging. Bellingham, WA: SPIE Press, 2006.
Znajdź pełny tekst źródłaConfocal microscopy and multiphoton excitation microscopy: The genesis of live cell imaging. Bellingham, Wash: SPIE Press, 2005.
Znajdź pełny tekst źródłaTsukahara, Shinji. Kagaku busshitsu no yūgaisei hyōka no kōritsuka o mezashita aratana shinkei dokusei shikenhō no kaihatsu: Kankyōshō kankyō kenkyū gijutsu kaihatsu suishinhi shūryō kenkyū seika hōkokusho : Heisei 20-nendo--Heisei 21-nendo = Use of live cell imaging for efficient neurotoxicology methods : environment research and technology development fund. [Tokyo]: Kankyōshō Sōgō Kankyō Seisakukyoku Kankyō Hokenbu Kankyō Anzenka Kankyō Risuku Hyōkashitsu, 2010.
Znajdź pełny tekst źródłaTsukahara, Shinji. Kagaku busshitsu no yūgaisei hyōka no kōritsuka o mezashita aratana shinkei dokusei shikenhō no kaihatsu: Kankyōshō kankyō kenkyū gijutsu kaihatsu suishinhi shūryō kenkyū seika hōkokusho : Heisei 20-nendo--Heisei 21-nendo = Use of live cell imaging for efficient neurotoxicology methods : environment research and technology development fund. [Tokyo]: Kankyōshō Sōgō Kankyō Seisakukyoku Kankyō Hokenbu Kankyō Anzenka Kankyō Risuku Hyōkashitsu, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Live Cell Imaging Biosensors"
Bravo-Cordero, Jose Javier, Yasmin Moshfegh, John Condeelis i Louis Hodgson. "Live Cell Imaging of RhoGTPase Biosensors in Tumor Cells". W Adhesion Protein Protocols, 359–70. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-538-5_22.
Pełny tekst źródłaSato, Moritoshi. "Genetically Encoded Fluorescent Biosensors for Live Cell Imaging of Lipid Dynamics". W Methods in Molecular Biology, 73–81. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-622-1_6.
Pełny tekst źródłaMishina, Natalia M., i Vsevolod V. Belousov. "Live-Cell STED Imaging with the HyPer2 Biosensor". W Methods in Molecular Biology, 21–28. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7265-4_3.
Pełny tekst źródłaKellenberger, Colleen A., Zachary F. Hallberg i Ming C. Hammond. "Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors". W RNA Scaffolds, 87–103. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2730-2_8.
Pełny tekst źródłaOuyang, Mingxing, Shaoying Lu i Yingxiao Wang. "Genetically Encoded Fluorescent Biosensors for Live-Cell Imaging of MT1-MMP Protease Activity". W Methods in Molecular Biology, 163–74. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-622-1_13.
Pełny tekst źródłaManna, Sudeshna, Colleen A. Kellenberger, Zachary F. Hallberg i Ming C. Hammond. "Live Cell Imaging Using Riboswitch–Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors". W RNA Scaffolds, 121–40. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1499-0_10.
Pełny tekst źródłaHung, Yin Pun, i Gary Yellen. "Live-Cell Imaging of Cytosolic NADH–NAD+ Redox State Using a Genetically Encoded Fluorescent Biosensor". W Methods in Molecular Biology, 83–95. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-622-1_7.
Pełny tekst źródłaLopreside, Antonia, Maria Maddalena Calabretta, Laura Montali, Aldo Roda i Elisa Michelini. "Live Cell Immobilization". W Handbook of Cell Biosensors, 1–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-47405-2_146-1.
Pełny tekst źródłaLopreside, Antonia, Maria Maddalena Calabretta, Laura Montali, Aldo Roda i Elisa Michelini. "Live Cell Immobilization". W Handbook of Cell Biosensors, 479–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-23217-7_146.
Pełny tekst źródłaVan Kerckvoorde, Melinda, Matthew J. Ford, Patricia L. Yeyati, Pleasantine Mill i Richard L. Mort. "Live Imaging and Analysis of Cilia and Cell Cycle Dynamics with the Arl13bCerulean-Fucci2a Biosensor and Fucci Tools". W Methods in Molecular Biology, 291–309. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1538-6_21.
Pełny tekst źródłaStreszczenia konferencji na temat "Live Cell Imaging Biosensors"
Pavlinska, Zuzana, Zuzana Kronekova, Igor Lacik, Dusana Trelova, Filip Razga, Veronika Nemethova, Lucia Uhelska, Alzbeta Marcek Chorvatova, Tibor Teplicky i Dusan Chorvat. "A bio-inspired design of live cell biosensors". W Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV, redaktorzy Alexander N. Cartwright, Dan V. Nicolau i Dror Fixler. SPIE, 2018. http://dx.doi.org/10.1117/12.2288789.
Pełny tekst źródłaLu, Shaoying, i Yingxiao Wang. "Application of FRET biosensors and computational analysis for live cell imaging". W SPIE BiOS: Biomedical Optics, redaktorzy Alexander P. Savitsky i Yingxiao Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.812183.
Pełny tekst źródłaKamioka, Yuji, Kenta Sumiyama, Rei Mizuno i Michiyuki Matsuda. "Live imaging of transgenic mice expressing FRET biosensors". W 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6609453.
Pełny tekst źródłaBoero, Cristina, Maria Antonietta Casulli, Jacopo Olivo, Lorenzo Foglia, Sandro Carrara i Giovanni De Micheli. "Live demonstration: In-situ biosensors array for cell culture monitoring". W 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2014. http://dx.doi.org/10.1109/biocas.2014.6981676.
Pełny tekst źródłaMoscelli, Nicola, Wojciech Witarski, Sander van den Driesche i Michael J. Vellekoop. "In incubator live cell imaging platform". W SPIE Microtechnologies, redaktorzy Ulrich Schmid, José Luis Sánchez-Rojas i Monika Leester-Schaedel. SPIE, 2011. http://dx.doi.org/10.1117/12.886908.
Pełny tekst źródłaSchneckenburger, Herbert, Verena Richter, Sarah Bruns, Thomas Bruns, Mathis Piper, Petra Weber, Michael Wagner i Christoph Cremer. "Axial tomography in 3D live cell microscopy". W Advances in Microscopic Imaging, redaktorzy Francesco S. Pavone, Emmanuel Beaurepaire i Peter T. So. SPIE, 2017. http://dx.doi.org/10.1117/12.2286602.
Pełny tekst źródłaRen, Juan, i Qingze Zou. "Modeling of sample deformation in atomic force microscope imaging on live cell: Live mammalian cell imaging example?" W 2017 American Control Conference (ACC). IEEE, 2017. http://dx.doi.org/10.23919/acc.2017.7963048.
Pełny tekst źródłaSim, J. Y., N. Borghi, A. Ribeiro, M. Sorokina, O. Shcherbakova, D. Ramallo, A. Dunn, W. J. Nelson i B. L. Pruitt. "Uniaxial cell stretcher enables high resolution live cell imaging". W 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2012. http://dx.doi.org/10.1109/memsys.2012.6170320.
Pełny tekst źródłaMellors, Ben O., Hamid Dehghani, Christopher R. Howle i Abigail M. Spear. "Cell trauma detection using infra-red live cell imaging". W Preclinical and Clinical Optical Diagnostics, redaktorzy J. Quincy Brown i Ton G. van Leeuwen. SPIE, 2019. http://dx.doi.org/10.1117/12.2525012.
Pełny tekst źródłaSchneckenburger, H., V. Richter i C. Cremer. "Multi-modal Imaging in Live Cell Microscopy". W 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285496.
Pełny tekst źródłaRaporty organizacyjne na temat "Live Cell Imaging Biosensors"
Ray, Judhajeet. Aptamer sensors for live-cell imaging of Pol II promoter activity. Office of Scientific and Technical Information (OSTI), grudzień 2014. http://dx.doi.org/10.2172/1227286.
Pełny tekst źródłaZhang, Yun. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy. Office of Scientific and Technical Information (OSTI), grudzień 2008. http://dx.doi.org/10.2172/964390.
Pełny tekst źródłaBelkin, Shimshon, Sylvia Daunert i Mona Wells. Whole-Cell Biosensor Panel for Agricultural Endocrine Disruptors. United States Department of Agriculture, grudzień 2010. http://dx.doi.org/10.32747/2010.7696542.bard.
Pełny tekst źródła