Artykuły w czasopismach na temat „Liquid Fuel Generation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Liquid Fuel Generation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Ji, Junling Yang, Huafu Zhang, Zhentao Zhang i Yu Zhang. "Research status and future development of biomass liquid fuels". BioResources 16, nr 2 (8.04.2021): 4523–43. http://dx.doi.org/10.15376/biores.16.2.zhang.
Pełny tekst źródłaAmbrose, M. J., R. F. Costello i H. Schreiber. "Utility Combustion Turbine Evaluation of Coal Liquid Fuels". Journal of Engineering for Gas Turbines and Power 107, nr 3 (1.07.1985): 714–25. http://dx.doi.org/10.1115/1.3239793.
Pełny tekst źródłaKuznetsov, Geniy, Dmitrii Antonov, Maxim Piskunov, Leonid Yanovskyi i Olga Vysokomornaya. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications". Energies 15, nr 24 (16.12.2022): 9565. http://dx.doi.org/10.3390/en15249565.
Pełny tekst źródłaSankar, Vinay, Sreejith Sudarsanan, Sudipto Mukhopadhyay, Prabhu Selvaraj, Aravind Balakrishnan i Ratna Kishore Velamati. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review". Energies 16, nr 10 (11.05.2023): 4035. http://dx.doi.org/10.3390/en16104035.
Pełny tekst źródłaShi, Hong-Hui, i Kazuyoshi Takayama. "Generation of hypersonic liquid fuel jets accompanying self-combustion". Shock Waves 9, nr 5 (1.10.1999): 327–32. http://dx.doi.org/10.1007/s001930050193.
Pełny tekst źródłaChen, Zhuo, Tingzhou Lei, Zhiwei Wang, Xueqin Li i Peng Liu. "Environmental and Economic Impacts of Biomass Liquid Fuel Conversion and Utilization—A Review". Journal of Biobased Materials and Bioenergy 16, nr 2 (1.04.2022): 163–75. http://dx.doi.org/10.1166/jbmb.2022.2172.
Pełny tekst źródłaWang, Changlong, i Didier Astruc. "Recent developments of nanocatalyzed liquid-phase hydrogen generation". Chemical Society Reviews 50, nr 5 (2021): 3437–84. http://dx.doi.org/10.1039/d0cs00515k.
Pełny tekst źródłaChen, Jun Jie, i De Guang Xu. "Review on Progress and Challenges of the Power Generation Systems at Micro-Scales". International Letters of Chemistry, Physics and Astronomy 47 (luty 2015): 185–98. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.47.185.
Pełny tekst źródłaChen, Jun Jie, i De Guang Xu. "Review on Progress and Challenges of the Power Generation Systems at Micro-Scales". International Letters of Chemistry, Physics and Astronomy 47 (24.02.2015): 185–98. http://dx.doi.org/10.56431/p-0c1h5o.
Pełny tekst źródłaDjurisic-Mladenovic, Natasa, Zlatica Predojevic i Biljana Skrbic. "Conventional and advanced liquid biofuels". Chemical Industry 70, nr 3 (2016): 225–41. http://dx.doi.org/10.2298/hemind150311029d.
Pełny tekst źródłaGlushkov, Dmitrii, Dmitrii Klepikov, Aleksandr Nigay, Kristina Paushkina i Andrei Pleshko. "Experimental Research of the Initial Temperature and Additives Effect on the Ignition and Combustion Mechanisms of Composite Liquid Fuel in a High-Temperature Oxidizer". Applied Sciences 13, nr 6 (9.03.2023): 3501. http://dx.doi.org/10.3390/app13063501.
Pełny tekst źródłaLasemi, Mohammad Ali, Mohsen Assili i Amin Hajizadeh. "Multi-Objective Hydrothermal Generation Scheduling and Fuel Dispatch Management considering Liquid Fuel Dispatch Network Modeling". Electric Power Systems Research 187 (październik 2020): 106436. http://dx.doi.org/10.1016/j.epsr.2020.106436.
Pełny tekst źródłaRehan, M., A. S. Nizami, K. Shahzad, O. K. M. Ouda, I. M. I. Ismail, T. Almeelbi, T. Iqbal i A. Demirbas. "Pyrolytic liquid fuel: A source of renewable electricity generation in Makkah". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38, nr 17 (wrzesień 2016): 2598–603. http://dx.doi.org/10.1080/15567036.2016.1153753.
Pełny tekst źródłaKabeyi, Moses Jeremiah Barasa, i Oludolapo Akanni Olanrewaju. "Biogas Production and Applications in the Sustainable Energy Transition". Journal of Energy 2022 (9.07.2022): 1–43. http://dx.doi.org/10.1155/2022/8750221.
Pełny tekst źródłaTavel, Nelson Garcia, i Isabel C. Johnson. "Orimulsion®-400, the Next Generation: Environmental Fate, Effects, and Recovery". International Oil Spill Conference Proceedings 1999, nr 1 (1.03.1999): 1233–38. http://dx.doi.org/10.7901/2169-3358-1999-1-1233.
Pełny tekst źródłaLiu, Ya, Dan Lei, Xiaoqi Guo, Tengfei Ma, Feng Wang i Yubin Chen. "Scale Effect on Producing Gaseous and Liquid Chemical Fuels via CO2 Reduction". Energies 15, nr 1 (4.01.2022): 335. http://dx.doi.org/10.3390/en15010335.
Pełny tekst źródłaAbdul Jabbar, Mohammed Hussain, Dave Thompson, Javier Parrondo, Cenk Gumeci, Yoshihisa Furuya, Nilesh Dale, Martinus Dewa, Su Ha, Fan Liu i Chuancheng Duan. "Performance and Durability of Metal SOFCs in Alternate Fuels". ECS Transactions 111, nr 6 (19.05.2023): 2311–20. http://dx.doi.org/10.1149/11106.2311ecst.
Pełny tekst źródłaBennett, James P., Kyei Sing Kwong, Hugh Thomas i Rick Krabbe. "A New Generation of Refractories to Enable Gasifier Fuel Flexibility". Advances in Science and Technology 70 (październik 2010): 179–92. http://dx.doi.org/10.4028/www.scientific.net/ast.70.179.
Pełny tekst źródłaAn, Sang Mo, Woo Shik Kim i Sang Yong Lee. "Spraying of liquid fuel for improvement of reforming performance for hydrogen generation". International Journal of Hydrogen Energy 36, nr 9 (maj 2011): 5342–49. http://dx.doi.org/10.1016/j.ijhydene.2011.01.171.
Pełny tekst źródłaMohd Mustaqim Tukiman, Shahrul Azmir Osman, Mas Fawzi i Norrizal Mustaffa. "Enhancing the Spark Ignition Engine Performance for Use LPG Liquid Phase by Modified the Ignition Timings". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 95, nr 1 (18.06.2022): 76–84. http://dx.doi.org/10.37934/arfmts.95.1.7684.
Pełny tekst źródłaKimura, Lygia Maestri, Larissa Cardoso Santos, Paula Fraga Vieira, Priciane Martins Parreira i Humberto Molinar Henrique. "Biomass Pyrolysis: Use of Some Agricultural Wastes for Alternative Fuel Production". Materials Science Forum 660-661 (październik 2010): 259–64. http://dx.doi.org/10.4028/www.scientific.net/msf.660-661.259.
Pełny tekst źródłaTÜRKER, Onur Can. "SOLAR ENERGY ASSISTS SEDIMENT MICROBIAL FUEL CELL TO GENERATE GREEN ENERGY FROM LIQUID ORGANIC WASTE". Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering 23, nr 2 (28.06.2022): 173–83. http://dx.doi.org/10.18038/estubtda.1031449.
Pełny tekst źródłaHakawati, Rawan, Beatrice Smyth, Helen Daly, Geoffrey McCullough i David Rooney. "Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure?" Energies 12, nr 6 (16.03.2019): 1031. http://dx.doi.org/10.3390/en12061031.
Pełny tekst źródłaBalan, Venkatesh. "Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass". ISRN Biotechnology 2014 (5.05.2014): 1–31. http://dx.doi.org/10.1155/2014/463074.
Pełny tekst źródłaLear, M. "The New Zealand Energy Scene Now and Post-Maui". Energy Exploration & Exploitation 13, nr 2-3 (maj 1995): 123–32. http://dx.doi.org/10.1177/0144598795013002-302.
Pełny tekst źródłaCastaño Mesa, Edisson S., Sebastián H. Quintana i Iván D. Bedoya. "Development of a Dual Fuel ICE-Based Micro-CHP System and Experimental Evaluation of Its Performance at Light Loads Using Natural Gas as Primary Fuel". Energies 16, nr 17 (29.08.2023): 6281. http://dx.doi.org/10.3390/en16176281.
Pełny tekst źródłaFedorovich, V., S. D. Varfolomeev, A. Sizov i I. Goryanin. "Multi-electrode microbial fuel cell with horizontal liquid flow". Water Science and Technology 60, nr 2 (1.07.2009): 347–55. http://dx.doi.org/10.2166/wst.2009.139.
Pełny tekst źródłaNakanishi, Atsushi, Shohei Hayashi, Hiroshi Satozono i Kazuue Fujita. "Polarization Imaging of Liquid Crystal Polymer Using Terahertz Difference-Frequency Generation Source". Applied Sciences 11, nr 21 (1.11.2021): 10260. http://dx.doi.org/10.3390/app112110260.
Pełny tekst źródłaTyurina, Elina, Aleksandr Mednikov i Pavel Zharkov. "Clean Coal Technologies for Electricity and Synthetic Liquid Fuel Production for Distributed Generation". Environmental and Climate Technologies 24, nr 2 (1.09.2020): 124–35. http://dx.doi.org/10.2478/rtuect-2020-0060.
Pełny tekst źródłaARNOLD, Gerd, i Joachim WOLF. "Liquid Hydrogen for Automotive Application Next Generation Fuel for FC and ICE Vehicles". TEION KOGAKU (Journal of the Cryogenic Society of Japan) 40, nr 6 (2005): 221–30. http://dx.doi.org/10.2221/jcsj.40.221.
Pełny tekst źródłaVladimirov, I. A., Liliya Mukhametova i M. V. Yamashkin. "Some aspects of use of organic containing waste for electrical and thermal energy generation". E3S Web of Conferences 178 (2020): 01084. http://dx.doi.org/10.1051/e3sconf/202017801084.
Pełny tekst źródłaHönig, Vladimír, Matyáš Orsák i Štěpánka Horníčková. "Analysis of the Effects of BioButanol and BioEthanol on the Vapour Pressure Gasoline". Advanced Materials Research 1030-1032 (wrzesień 2014): 1411–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.1411.
Pełny tekst źródłaĆosić, Bernhard, Dominik Waßmer i Franklin Genin. "Integration of Fluidic Nozzles in the New Low Emission Dual Fuel Combustion System for MGT Gas Turbines". Fluids 6, nr 3 (21.03.2021): 129. http://dx.doi.org/10.3390/fluids6030129.
Pełny tekst źródłaNogueira da Silva, Nayane, Fabiana Rocha Pinto, David Barbosa de Alencar i Ricardo Silva Parente. "Transformation of Plastic Waste into Fuel by Pyrolysis". International Journal for Innovation Education and Research 7, nr 11 (30.11.2019): 628–36. http://dx.doi.org/10.31686/ijier.vol7.iss11.1917.
Pełny tekst źródłaVourdoubas, John, i Vasiliki K. Skoulou. "Possibilities of Upgrading Solid Underutilized Lingo-cellulosic Feedstock (Carob Pods) to Liquid Bio-fuel: Bio-ethanol Production and Electricity Generation in Fuel Cells - A Critical Appraisal of the Required Processes". Studies in Engineering and Technology 4, nr 1 (20.01.2017): 25. http://dx.doi.org/10.11114/set.v4i1.2170.
Pełny tekst źródłaJoseph, Ben, Frank Hensgen, Lutz Bühle i Michael Wachendorf. "Solid Fuel Production from Semi-Natural Grassland Biomass—Results from a Commercial-Scale IFBB Plant". Energies 11, nr 11 (1.11.2018): 3011. http://dx.doi.org/10.3390/en11113011.
Pełny tekst źródłaKolář, L., S. Kužel, J. Peterka i J. Borová-Batt. "Agrochemical value of the liquid phase of wastes from fermentem during biogas production". Plant, Soil and Environment 56, No. 1 (27.01.2010): 23–27. http://dx.doi.org/10.17221/180/2009-pse.
Pełny tekst źródłaMiccio, Francesco, Elettra Papa, Annalisa Natali Murri, Elena Landi i Matteo Minelli. "Pressurized Steam Conversion of Biomass Residues for Liquid Hydrocarbons Generation". Energies 14, nr 4 (16.02.2021): 1034. http://dx.doi.org/10.3390/en14041034.
Pełny tekst źródłaRimkus, Alfredas, Saulius Stravinskas i Jonas Matijošius. "Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine". Applied Sciences 10, nr 1 (3.01.2020): 359. http://dx.doi.org/10.3390/app10010359.
Pełny tekst źródłaMularczyk, Adrian, i Antoni Forner-Cuenca. "Engineering Electrodes with Bimodal Pore Size Distributions for Next-Generation Electrochemical Devices". ECS Meeting Abstracts MA2022-01, nr 35 (7.07.2022): 1434. http://dx.doi.org/10.1149/ma2022-01351434mtgabs.
Pełny tekst źródłaBrockmeyer, J. W. "Ceramic Matrix Composite Applications in Advanced Liquid Fuel Rocket Engine Turbomachinery". Journal of Engineering for Gas Turbines and Power 115, nr 1 (1.01.1993): 58–63. http://dx.doi.org/10.1115/1.2906686.
Pełny tekst źródłaStelmachowski, Marek, i Krzysztof Słowiński. "Thermal and thermo-catalytic conversion of waste polyolefins to fuel-like mixture of hydrocarbons". Chemical and Process Engineering 33, nr 1 (1.03.2012): 185–98. http://dx.doi.org/10.2478/v10176-012-0016-z.
Pełny tekst źródłaKamińska-Pietrzak, Natalia, Natalia Howaniec i Adam Smoliński. "THE INFLUENCE OF FEEDSTOCK TYPE AND OPERATING PARAMETERS ON TAR FORMATION IN THE PROCESS OF GASIFICATION AND CO-GASIFICATION". Ecological Chemistry and Engineering S 20, nr 4 (1.12.2013): 747–61. http://dx.doi.org/10.2478/eces-2013-0052.
Pełny tekst źródłaIslam, Ekramul, Md Saddam Hossain, Palash Kumar Sarker, Syeda Tasneem Towhid, Md Salimullah i Abu Hashem. "Isolation and Characterization of Electrogenic Bacteria from Tannery Wastewater". Bangladesh Journal of Microbiology 37, nr 1 (30.06.2020): 23–27. http://dx.doi.org/10.3329/bjm.v37i1.51205.
Pełny tekst źródłaRodriguez, Karen, Marcelo Pedroso, Audrey Harris, Shivani Garg, Damian Hine, Michael Köpke, Gerhard Schenk i Esteban Marcellin. "Gas fermentation for microbial sustainable aviation fuel production". Microbiology Australia 44, nr 1 (6.03.2023): 31–35. http://dx.doi.org/10.1071/ma23008.
Pełny tekst źródłaZajecs, D., K. Lebedeva i T. Odineca. "Application Possibilities of the Off-Grid HVAC System Operation Solution for Temporary Shelters in the Latvian Climate Conditions". Latvian Journal of Physics and Technical Sciences 59, nr 2 (1.04.2022): 55–63. http://dx.doi.org/10.2478/lpts-2022-0011.
Pełny tekst źródłaLeybovych, Lev, Borys Dymo, Sergey Anastasenko i Yurii Yevstigneyev. "RESEARCH OF THE PHYSICAL PROPERTIES OF DIESEL FUEL-HYDROGEN MIXTURES". Ukrainian Chemistry Journal 87, nr 9 (25.10.2021): 45–54. http://dx.doi.org/10.33609/2708-129x.87.09.2021.45-54.
Pełny tekst źródłaNeuhausen, Jörg. "Radionuclide Chemistry in Nuclear Facilities Based on Heavy Liquid Metal Coolants: Past, Present and Future". CHIMIA International Journal for Chemistry 74, nr 12 (23.12.2020): 976–83. http://dx.doi.org/10.2533/chimia.2020.976.
Pełny tekst źródłaLee, Dong-Ha, Seung-Joo Cha, Jeong-Dae Kim, Jeong-Hyeon Kim, Seul-Kee Kim i Jae-Myung Lee. "Practical Prediction of the Boil-Off Rate of Independent-Type Storage Tanks". Journal of Marine Science and Engineering 9, nr 1 (1.01.2021): 36. http://dx.doi.org/10.3390/jmse9010036.
Pełny tekst źródłaJi, Hyun-Jin, Sang-Hyun Ha, Young-Chul Kim i Sung-Baek Cho. "Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor". Journal of the Korea Institute of Military Science and Technology 14, nr 4 (5.08.2011): 732–39. http://dx.doi.org/10.9766/kimst.2011.14.4.732.
Pełny tekst źródła