Gotowa bibliografia na temat „Liquid Crystal Nanocomposites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Liquid Crystal Nanocomposites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Liquid Crystal Nanocomposites"
Lee, H. L., M. Abu Bakar, J. Ismail i A. M. Issam. "SYNTHESIS AND CHARACTERIZATION OF CdS IN DIOL VANILIN LIQUID CRYSTAL MONOMER". Indonesian Journal of Chemistry 7, nr 2 (20.06.2010): 128–36. http://dx.doi.org/10.22146/ijc.21687.
Pełny tekst źródłaKaiser, Andreas, Moritz Winkler, Simon Krause, Heino Finkelmann i Annette M. Schmidt. "Magnetoactive liquid crystal elastomer nanocomposites". J. Mater. Chem. 19, nr 4 (2009): 538–43. http://dx.doi.org/10.1039/b813120c.
Pełny tekst źródłaRoohnikan, Mahdi, Violeta Toader, Alejandro Rey i Linda Reven. "Hydrogen-Bonded Liquid Crystal Nanocomposites". Langmuir 32, nr 33 (9.08.2016): 8442–50. http://dx.doi.org/10.1021/acs.langmuir.6b02256.
Pełny tekst źródłaRudenko, Valentyn, Anatolii Tolochko, Svitlana Bugaychuk, Dmytro Zhulai, Gertruda Klimusheva, Galina Yaremchuk, Tatyana Mirnaya i Yuriy Garbovskiy. "Probing Optical Nonlinearities of Unconventional Glass Nanocomposites Made of Ionic Liquid Crystals and Bimetallic Nanoparticles". Nanomaterials 12, nr 6 (11.03.2022): 924. http://dx.doi.org/10.3390/nano12060924.
Pełny tekst źródłaBudaszewski, Daniel, Kaja Wolińska, Bartłomiej Jankiewicz, Bartosz Bartosewicz i Tomasz Ryszard Woliński. "Spectral Properties of Photo-Aligned Photonic Crystal Fibers Infiltrated with Gold Nanoparticle-Doped Ferroelectric Liquid Crystals". Crystals 10, nr 9 (4.09.2020): 785. http://dx.doi.org/10.3390/cryst10090785.
Pełny tekst źródłaKempaiah, Ravindra, Yijing Liu, Zhihong Nie i Rajratan Basu. "Giant soft-memory in liquid crystal nanocomposites". Applied Physics Letters 108, nr 8 (22.02.2016): 083105. http://dx.doi.org/10.1063/1.4942593.
Pełny tekst źródłaPushpavathi, N., i K. L. Sandhya. "Photoluminescence study of liquid crystal-ZnO nanocomposites". Journal of Molecular Liquids 274 (styczeń 2019): 724–29. http://dx.doi.org/10.1016/j.molliq.2018.11.037.
Pełny tekst źródłaKausar, Ayesha. "Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers". Journal of Plastic Film & Sheeting 35, nr 1 (20.06.2018): 22–44. http://dx.doi.org/10.1177/8756087918783827.
Pełny tekst źródłaBasta, Altaf H., Vivian F. Lotfy, Jehane A. Micky i Aya M. Salem. "Cellulose Ether-Based Liquid Crystal Materials: Review Article". Journal of Research Updates in Polymer Science 10 (29.11.2021): 69–83. http://dx.doi.org/10.6000/1929-5995.2021.10.9.
Pełny tekst źródłaChausov, D. N., A. D. Kurilov i V. V. Belyaev. "Liquid Crystal Nanocomposites Doped with Rare Earth Elements". Liquid Crystals and their Application 20, nr 2 (30.06.2020): 6–22. http://dx.doi.org/10.18083/lcappl.2020.2.6.
Pełny tekst źródłaRozprawy doktorskie na temat "Liquid Crystal Nanocomposites"
Fox, Anna E. Fontecchio Adam. "A study of optical propagation in polymer liquid crystal nanocomposites for photolithography applications /". Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3106.
Pełny tekst źródłaLu, Xiaoyun. "Design and study of lyotropic liquid crystal-butyl rubber nanocomposites for chemical agent vapor barrier applications". Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3284451.
Pełny tekst źródłaAlqahtany, Faleh. "From water soluble mesogens to liquid crystal gold nanocomposites : synthesis and investigation of flexible chain variation in rod-shaped mesogens". Thesis, University of Hull, 2015. http://hydra.hull.ac.uk/resources/hull:13218.
Pełny tekst źródłaBandyopadhyay, Jayita. "Effects of nano-clay on the structure and properties of thermotropic liquid crystal polymer an its blends with poly (ethylene terephthalate)". Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28280/28280.pdf.
Pełny tekst źródłaXu, Peicheng. "Self-assembly of surface-modified clays for functional biomimetic materials". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289449.
Pełny tekst źródłaKalakonda, Parvathalu. "Thermal Physical Properties Of Nanocomposites Of Complex Fluids". Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/301.
Pełny tekst źródłaGutierrez, Cuevas Karla Guadalupe Gutierrez. "LIQUID CRYSTALLINE NANOCOMPOSITES: FROM ACHIRAL TO CHIRAL SYSTEMS". Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1500998489695319.
Pełny tekst źródłaMirzaei, Javad. "Optical and Electro-optical Properties of Nematic Liquid Crystals with Nanoparticle Additives". The Royal Society of Chemistry, 2011. http://hdl.handle.net/1993/30280.
Pełny tekst źródłaPin, Jean-Mathieu. "Matrices thermodurcissables époxydes et furaniques biosourcées – conception d’assemblages macromoléculaires". Thesis, Nice, 2015. http://www.theses.fr/2015NICE4027/document.
Pełny tekst źródłaThe research work presented in this thesis was oriented on advanced thermoset materials and also on the conception of bio-based polymers and composites. This last topic has been investigated by the combination of different bio-based raw materials which are well-known to have a great potential to substitute the petroleum monomers. Firstly, a fundamental work has been done on the combination of epoxidized linseed oil (ELO) and anhydrides as cross-linkers, which links the polymerization reactivity with the network structure and thermomechanical properties. For being economically realistic, the bio-refineries are urged to valorize the sidestream products issued from biomass conversion. In that respect, a second study investigated successfully the incorporation and copolymerization of an important amount of humins (heterogeneous residues obtained during the sugar conversion into hydroxymethylfurfural (HMF)) with furfuryl alcohol (FA) in order to create new resins. Another proposed combination, focused on ELO and FA cationic copolymerization with the purpose to create new fully bio-based resins with tailored mechanical properties. Concerning the elaboration of advanced polymers and composites, a reflection around the hierarchically organized natural materials has been achieved in order to adapt the self-organization and structuration concepts to polymeric network
Kharkov, Boris. "Molecular Order and Dynamics in Nanostructured Materials by Solid-State NMR". Doctoral thesis, KTH, Tillämpad fysikalisk kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160636.
Pełny tekst źródłaQC 20150225
Książki na temat "Liquid Crystal Nanocomposites"
ZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Znajdź pełny tekst źródłaLiquid Crystal Polymer Nanocomposites. Elsevier, 2022. http://dx.doi.org/10.1016/c2019-0-01063-1.
Pełny tekst źródłaSemkin, Artem, P. M. Visakh i Zeynep Guven Ozdemir. Liquid Crystal Polymer Nanocomposites. Woodhead Publishing, 2021.
Znajdź pełny tekst źródłaVisakh, P. M., Artem Semkin i Zeynep Guven Ozdemir. Liquid Crystal Polymer Nanocomposites. Elsevier Science & Technology, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Liquid Crystal Nanocomposites"
Barzic, Andreea Irina, Raluca Marinica Albu i Luminita Ioana Buruiana. "Liquid Crystal Polymers". W High Performance Polymers and Their Nanocomposites, 27–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119363910.ch2.
Pełny tekst źródłaPatro, Ch Kartikeshwar, Aakarti Garg, Rohit Verma, Ravindra Dhar i Roman Dabrowski. "Thermodynamic Characteristics of Liquid Crystal-Nanocomposites". W Springer Proceedings in Physics, 111–15. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8625-5_12.
Pełny tekst źródłaSatapathy, Pragnya, Divya Jayoti i S. Krishna Prasad. "Liquid Crystals in One-Dimensional Polymeric Nanonetworks: Physics and Applications". W One-Dimensional Polymeric Nanocomposites, 91–106. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003223764-6.
Pełny tekst źródłaMadhav, B. T. P., i V. G. K. M. Pisipati. "Liquid crystal and liquid crystal polymer antennas". W Liquid Crystal Polymer Nanocomposites, 213–34. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.00008-x.
Pełny tekst źródłaPrakash, Jai, Ajay Kumar i Shikha Chauhan. "Liquid crystals/liquid crystal polymers nanocomposites for memory applications". W Liquid Crystal Polymer Nanocomposites, 117–40. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.00004-2.
Pełny tekst źródłaMohana, K., S. Umadevi i V. Ganesh. "Liquid crystalline elastomer based nanocomposites". W Liquid Crystal Polymer Nanocomposites, 23–67. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.00007-8.
Pełny tekst źródłaMüller Cardoso, Carolina, i Carolina Ferreira de Matos. "Liquid crystalline polymer/nanoplatelet nanocomposites". W Liquid Crystal Polymer Nanocomposites, 69–90. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.00003-0.
Pełny tekst źródłaAljabali, Alaa A. A., Kaushik Pal, Murtaza M. Tambuwala i Kamal Dua. "Liquid crystalline polymer-based bio-nanocomposites for spectroscopic applications". W Liquid Crystal Polymer Nanocomposites, 141–62. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.00009-1.
Pełny tekst źródłaAljabali, Alaa A. A., Marlin Baral, Carolina Müller Cardoso, Shikha Chauhan, Nima Dalir, Kamal Dua, V. Ganesh i in. "Contributors". W Liquid Crystal Polymer Nanocomposites, ix—x. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.09992-1.
Pełny tekst źródłaLoiko, V. A., A. V. Konkolovich, A. A. Miskevich, M. N. Krakhalev, O. O. Prishchepa, A. V. Shabanov i V. Ya Zyryanov. "Electro-optical response of a monolayer polymer dispersed nematic liquid crystal film doped with surfactant". W Liquid Crystal Polymer Nanocomposites, 163–211. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822128-0.00006-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Liquid Crystal Nanocomposites"
Hogan, Ben, Monica Craciun i Anna Baldycheva. "2D Material Liquid Crystal Nanocomposites for Optoelectronic and Photonic Devices". W Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.26.
Pełny tekst źródłaSingh, Gautam, Michael R. Fisch i Satyendra Kumar. "Electrically tunable photoluminescence of semiconducting quantum dots doped nematic liquid crystal nanocomposites". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032773.
Pełny tekst źródłaKhan, Muhammad Omer, Ellen Chan, Siu N. Leung, Hani Naguib, Francis Dawson i Vincent Adinkrah. "Multifunctional Liquid Crystal Polymeric Composites Embedded With Graphene Nano Platelets". W ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5123.
Pełny tekst źródłada Silveira, Nádya Pesce, Françoise Ehrburger-Dolle, Cyrille Rochas, Arnaud Rigacci, Fabiano Vargas Pereira, Aloir Antonio Merlo, Harry Westfahl i Rogério Magalhaes Paniago. "Smectic ordering in polymer liquid crystal-silica aerogel nanocomposites. Studies of DSC and SAXS." W SYNCHROTRON RADIATION IN MATERIALS SCIENCE: Proceedings of the 6th International Conference on Synchrotron Radiation in Materials Science. AIP, 2009. http://dx.doi.org/10.1063/1.3086223.
Pełny tekst źródłaReven, Linda, Jason Wong, Manlin Zhang, Stephan Kouame i Violeta Toader. "LC nanocomposites: polymer functionalized nanoparticles". W Liquid Crystals XXIV, redaktor Iam Choon Khoo. SPIE, 2020. http://dx.doi.org/10.1117/12.2579897.
Pełny tekst źródłaRohatgi, Aashish, William R. Pogue, Jared N. Baucom i James P. Thomas. "Microstructural and Mechanical Characterization of Carbon Nanofiber Reinforced Composites". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17038.
Pełny tekst źródłaWang, Wei, Sehoon Chang i Gawain Thomas. "Scale-Up Fabrication and Microfluidic Evaluation of Janus Graphene Nanofluids as Novel EOR Agent". W Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213484-ms.
Pełny tekst źródłaBlacker, Richard S., K. L. Lewis, I. Sage, I. Mason i K. Webb. "Optically isotropic polymer / liquid crystal hybrid filters". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.the.5.
Pełny tekst źródłaHadjichristov, Georgi B., Yordan G. Marinov, Todor E. Vlakhov i Alexander G. Petrov. "Graphene-nematic liquid crystal E7 nanocomposite: The effect from nanodopants". W 10th Jubilee International Conference of the Balkan Physical Union. Author(s), 2019. http://dx.doi.org/10.1063/1.5091133.
Pełny tekst źródłaTkachenko, Georgiy V., Igor A. Sukhoivanov, Oleksiy V. Shulika i Volodymyr Tkachenko. "Tunable optical filter based on nanocomposite (liquid crystal)/(porous silicon)". W SPIE OPTO, redaktor Liang-Chy Chien. SPIE, 2012. http://dx.doi.org/10.1117/12.909380.
Pełny tekst źródła