Gotowa bibliografia na temat „Liquid crystal”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Liquid crystal”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Liquid crystal"

1

O'Rourke, Mary Jane E., i Edwin L. Thomas. "Morphology and Dynamic Interaction of Defects in Polymer Liquid Crystals". MRS Bulletin 20, nr 9 (wrzesień 1995): 29–36. http://dx.doi.org/10.1557/s0883769400034904.

Pełny tekst źródła
Streszczenie:
The liquid crystal phase is an anisotropic mesophase, intermediate in order between the liquid and crystal phases. Liquid crystals have less translational order than crystals and more rotational order than isotropic liquids. The liquid crystal phase does not support finite shear stresses and thus behaves like a fluid. Molecules that display a liquid crystal phase are referred to as mesogenic. Mesogenic molecules exhibit shape anisotropy: either large length to diameter ratio (needlelike) or large diameter to thickness ratio (disklike). Because of their shape anisotropy, all liquid crystals display orientational order of their molecular axes.Until 1956, all known examples of liquid crystals were low molecular weight compounds. Robinson was the first to identify liquid crystallinity in a liquid crystalline polymer (LCP) as the explanation for “a birefringent solution” of a polymeric material, poly-y-benzyl-L-glutamate, in chloroform, previously observed by Elliott and Ambrose. Chemists soon discovered that LCPs may be readily synthesized by covalently stitching small mesogenic units (e.g., rigid monomers) together into a chain using short flexible spacers. Mainchain or sidechain liquid crystal polymers may be formed (Figure 1). An example of a polymer molecule possessing a liquid crystal phase is shown in Figure 2. Liquid crystals may be thermotropic, where liquid crystallinity is exhibited over a range of temperatures, or lyotropic, where nonmesogenic solvent molecules are present in addition to the mesogens, and liquid crystallinity is observed over a range of concentrations as well.
Style APA, Harvard, Vancouver, ISO itp.
2

Wan Omar, Wan Ibtisam, i Chin Fhong Soon. "Critical Surface Tension of Cholesteryl Ester Liquid Crystal". Advanced Materials Research 925 (kwiecień 2014): 43–47. http://dx.doi.org/10.4028/www.scientific.net/amr.925.43.

Pełny tekst źródła
Streszczenie:
Cholesteryl ester liquid crystal was found to be non-toxic and it was recently applied as a cell traction force sensor. The reason for the affinity of the cells to this liquid crystal is unclear and required further investigation. This paper focused on determining the surface energy of the liquid crystals. A custom built contact angle measurement system and Fox-Zisman theory was applied to determine the critical surface tension of the cholesteryl ester liquid crystal. Eight different polar probe liquids were selected to determine the contact angle of the glass slides coated with cholesteryl ester liquid crystals. We found that the critical surface tension of the liquid crystal at 37.5 mN/m characterized the surface of the liquid crystal to be moderately hydrophobic. However, as reported in our previous work that the interaction of the liquid crystal and the cell culture media could re-orientate the amphiphilic molecules of the liquid crystals leading to the formation of lyotropic layers on the bulk cholesteric phase, therefore, making the surface to be hydrophilic. This then supported the formation of the hydrophilic layers that favors cell adhesion.
Style APA, Harvard, Vancouver, ISO itp.
3

Czajkowski, Maciej, Joanna Feder-Kubis, Bartłomiej Potaniec, Łukasz Duda i Joanna Cybińska. "On the Miscibility of Nematic Liquid Crystals with Ionic Liquids and Joint Reaction for High Helical Twisting Power Product(s)". Materials 15, nr 1 (26.12.2021): 157. http://dx.doi.org/10.3390/ma15010157.

Pełny tekst źródła
Streszczenie:
Mixtures of nematic liquid crystals (LCs) with chiral ionic liquids (CILs) may find application as active materials for electrically driven broadband mirrors. Five nematic liquid crystal hosts were mixed with twenty three ionic liquids, including chiral ones, and studied in terms of their miscibility within the nematic phase. Phase diagrams of the mixtures with CILs which exhibited twisted nematic phase were determined. Miscibility, at levels between 2 and 5 wt%, was found in six mixtures with cyanobiphenyl-based liquid crystal host—E7. On the other hand, the highest changes in the isotropization temperature was found in the mixtures with isothiocyanate-based liquid crystal host—1825. Occurrence of chemical reactions was found. A novel chiral binaphtyl-based organic salt [N11116][BNDP] was synthesized and, in reaction to the 1825 host, resulted in high helical twisting power product(s). Selectivity of the reaction with the isothiocyanate-based liquid crystal was found.
Style APA, Harvard, Vancouver, ISO itp.
4

Joshi, Pankaj, Oliver Willekens, Xiaobing Shang, Jelle De Smet, Dieter Cuypers, Geert Van Steenberge, Jeroen Beeckman, Kristiaan Neyts i Herbert De Smet. "Tunable light beam steering device using polymer stabilized blue phase liquid crystals". Photonics Letters of Poland 9, nr 1 (31.03.2017): 11. http://dx.doi.org/10.4302/plp.v9i1.704.

Pełny tekst źródła
Streszczenie:
A polarization independent and fast electrically switchable beam steering device is presented, based on a surface relief grating combined with polymer stabilized blue phase liquid crystals. Switching on and off times are both less than 2 milliseconds. The prospects of further improvements are discussed. Full Text: PDF ReferencesD.C. Wright, et al., "Crystalline liquids: the blue phases", Rev. Mod. Phys. 61, 385 (1989). CrossRef H. Kikuchi, et al., "Polymer-stabilized liquid crystal blue phases", Nat. Mater. 1, 64 (2002). CrossRef Samsung, Korea, SID exhibition, (2008).J. Yan, et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450 (2010). CrossRef L. Rao, et al., "A large Kerr constant polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 98, 081109 (2011). CrossRef Y. Hisakado, et al., "Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases", Adv. Mater. 17, 96 (2005). CrossRef K. M. et al., "Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal", J. Disp. Technol. 6, 49 (2010). CrossRef Y. Chen, et al., "Level set based topology optimization for optical cloaks", Appl. Phys. Lett. 102, 251106 (2013). CrossRef H. Choi, et al., "Fast electro-optic switching in liquid crystal blue phase II", Appl. Phys. Lett. 98, 131905 (2011). CrossRef Y.H. Chen, et al., "Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time", Opt. Express 19, 25441 (2011). CrossRef Y. Li, et al., "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19, 8045 (2011). CrossRef C.T. Lee, et al., "Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal", Opt. Express 19, 17402 (2011). CrossRef Y.T. Lin, et al., "Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation", J. Appl. Phys. 113, (2013). CrossRef J.D. Lin, et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Optics Express 22, 29479 (2014). CrossRef W. Cao, et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mat. 1, 111 (2002). CrossRef S.T. Hur, et al., "Liquid-Crystalline Blue Phase Laser with Widely Tunable Wavelength", Adv. Mater. 25, 3002 (2013). CrossRef A. Mazzulla, et al., "Thermal and electrical laser tuning in liquid crystal blue phase I", Soft. Mater. 8, 4882 (2012). CrossRef C.W. Chen, et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978 (2012). CrossRef O. Willekens, et al., "Ferroelectric thin films with liquid crystal for gradient index applications", Opt. Exp. 24, 8088 (2016). CrossRef O. Willekens, et al., "Reflective liquid crystal hybrid beam-steerer", Opt. Exp. 24, 1541 (2016). CrossRef M. Jazbinšek, et al., "Characterization of holographic polymer dispersed liquid crystal transmission gratings", J. Appl. Phys. 90, 3831 (2001). CrossRef C.C. Bowley, et al., "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals", Appl. Phys. Lett. 79, 9 (2001). CrossRef Y.Q. Lu, et al., "Polarization switch using thick holographic polymer-dispersed liquid crystal grating", Appl. Phys. 95, 810 (2004). CrossRef J.J. Butler et al., "Diffraction properties of highly birefringent liquid-crystal composite gratings", Opt. Lett. 25, 420 (2000). CrossRef R.L. Sutherland et al., "Electrically switchable volume gratings in polymer-dispersed liquid crystals", Appl. Phys. Lett. 64, 1074 (1994). CrossRef X. Shang, et al., "Electrically Controllable Liquid Crystal Component for Efficient Light Steering", IEEE Photo. J. 7, 1 (2015). CrossRef J. Yan, et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef H.S. Chen, et al., "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles", Opt. Mat. Exp. 2, 1149 (2012). CrossRef J. Yan. et al., "Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal", Opt. Lett. 40, 4520 (2015). CrossRef H.S. Chen, et al., "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles", Opt. Mat. Exp. 2, 1149 (2012). CrossRef H.C. Cheng, et al., "Blue-Phase Liquid Crystal Displays With Vertical Field Switching", J. Disp. Technol. 8, 98 (2012). CrossRef
Style APA, Harvard, Vancouver, ISO itp.
5

Ramou, Efthymia, Guilherme Rebordão, Susana I. C. J. Palma i Ana C. A. Roque. "Stable and Oriented Liquid Crystal Droplets Stabilized by Imidazolium Ionic Liquids". Molecules 26, nr 19 (5.10.2021): 6044. http://dx.doi.org/10.3390/molecules26196044.

Pełny tekst źródła
Streszczenie:
Liquid crystals represent a fascinating intermediate state of matter, with dynamic yet organized molecular features and untapped opportunities in sensing. Several works report the use of liquid crystal droplets formed by microfluidics and stabilized by surfactants such as sodium dodecyl sulfate (SDS). In this work, we explore, for the first time, the potential of surface-active ionic liquids of the imidazolium family as surfactants to generate in high yield, stable and oriented liquid crystal droplets. Our results show that [C12MIM][Cl], in particular, yields stable, uniform and monodisperse droplets (diameter 74 ± 6 µm; PDI = 8%) with the liquid crystal in a radial configuration, even when compared with the standard SDS surfactant. These findings reveal an additional application for ionic liquids in the field of soft matter.
Style APA, Harvard, Vancouver, ISO itp.
6

MĂNĂILĂ-MAXIMEAN, Doina, i Viorel CÎRCU. "ON LIQUID CRYSTALS AND LIQUID CRYSTAL DISPERSIONS". Annals of the Academy of Romanian Scientists Series on Physics and Chemistry 7, nr 1 (2022): 88–98. http://dx.doi.org/10.56082/annalsarsciphyschem.2022.1.88.

Pełny tekst źródła
Streszczenie:
This short review paper presents some important aspects ofliquid crystal and liquid crystal composites. Preparation methods ofpolymer dispersed liquid crystalfdms (PDLC), the obtained structure and their main application as light valve are shown. In the last decade, the field has experienced a sharp revitalization, due to nanodoping, which results in an improvement in workperformance
Style APA, Harvard, Vancouver, ISO itp.
7

Kajkowska, Marta, Miłosz Chychłowski i Piotr Lesiak. "Influence of photopolymerization on propagation properties of photonic crystal fiber infiltrated with liquid crystal mixture". Photonics Letters of Poland 14, nr 3 (30.09.2022): 68. http://dx.doi.org/10.4302/plp.v14i3.1166.

Pełny tekst źródła
Streszczenie:
In this paper we analyze the influence of the photopolymerization process on propagation properties of photonic crystal fiber infiltrated with liquid crystal doped with a mixture of reactive monomer and photoinitiator. The obtained results showed changes in photonic band gap of the fiber due to refractive index change of the liquid crystal mixture caused by the polymerization process. Moreover, the research demonstrated the possibility of preserving the desired molecular orientation of liquid crystal initially stabilized by placing the sample in the external electric field. This was achieved by simultaneously irradiating the sample and controlling the orientation of liquid crystal molecules with the electric field. The spectral analysis of the polymerized sample showed no visible difference in propagation spectra when the electric field was turned off after the process was finished. Full Text: PDF ReferencesK. Yin et al., "Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications", Light Sci Appl. 11, 161 (2022). CrossRef S. Singh, "Phase transitions in liquid crystals", Phys. Rep. 324, 107 (2000). CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský, "Birefringence dispersion of 6CHBT liquid crystal determined in VIS-NIR spectral range", Appl. Surf. Sci. 542, 148525 (2021). CrossRef R. Dąbrowski, P. Kula, J. Herman, "High Birefringence Liquid Crystals", Crystals 3, 443 (2013). CrossRef R. H. Self, C. P. Please, T. J. Sluckin, "Deformation of nematic liquid crystals in an electric field", Eur. J. Appl. Math. 13, 1 (2002). CrossRef T. Hegmann, H. Qi, V. M. Marx, "Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications", J. Inorg. Organomet. Polym. 17, 483 (2007). CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas, "Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals", Appl. Phys. Lett. 91, 023120 (2007). CrossRef I. Dierking, "Polymer Network–Stabilized Liquid Crystals", Adv. Mater. 12, 167 (2000). CrossRef D. C. Hoekstra et al., "Wavelength-Selective Photopolymerization of Hybrid Acrylate-Oxetane Liquid Crystals", Angew. Chem. Int. Ed. 60, 10935 (2021). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays", Appl. Phys. Lett. 94, 101104 (2009). CrossRef M. S. Chychłowski et al., "Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers", Opto-electron. Rev. 26, 242 (2018). CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński, "Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group", Mol. Cryst. Liq. Cryst. 124, 241 (1985). CrossRef
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Li Hua, Ying Bai, Fu Min Wang i Ning Liu. "Fabrication and Characterizes of TiO2 Nanomaterials Templated by Lyotropic Liquid Crystal". Advanced Materials Research 399-401 (listopad 2011): 532–37. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.532.

Pełny tekst źródła
Streszczenie:
TiO2 nanomaterials were synthesized in lyotropic liquid crystal formed by nonionic surfactant TritonX-100 and TiOSO4 aqueous solution with NH3•H2O as precipitator. The lyotropic liquid crystals were characterized by means of POM and Low-angle XRD. FT-IR, TGA, XRD, TEM were used to characterize the TiO2 samples. It was found that all the lytropic liquid crystal were in lamellar liquid crysal phase and after casting the micro-structure of the LLC phase, the TiO2 samples were self-assemble to form lamellar, sphere and rod structures. According to the characterization results, possible formation mechanism was proposed.
Style APA, Harvard, Vancouver, ISO itp.
9

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska i Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology". Photonics Letters of Poland 11, nr 2 (1.07.2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Pełny tekst źródła
Streszczenie:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
Style APA, Harvard, Vancouver, ISO itp.
10

Korec, Joanna, Karol Antoni Stasiewicz i Leszek Roman Jaroszewicz. "Temperature effect on the light propagation in a tapered optical fiber with a twisted nematic liquid crystal cladding". Photonics Letters of Poland 11, nr 1 (3.04.2019): 16. http://dx.doi.org/10.4302/plp.v11i1.881.

Pełny tekst źródła
Streszczenie:
This paper presents the influence of temperature on optical power spectrum propagated in a tapered optical fiber with twisted nematic liquid crystal cladding (TOF-TNLCC) modulated by an electric field. The measurements were performed for a liquid crystal cell with the twisted orientation of ITO layers, filled with E7 mixture. The induced reorientation of liquid crystal (LC) n-director was measured for visible and near-infrared wavelength range [550-1100 nm] at the electric field range of 0–160 V and temperature range of 20-60 °C. The relation between temperature and the optical power spectrum of the investigated device has been established. Full Text: PDF ReferencesV.J. Tekippe, "Passive fiber optic components made by the fused biconical taper process", Proc. SPIE 1085 (1990). CrossRef T. A. Birks, Y. W. Li, The shape of fiber tapers, Journal of Lightwave Technology 10, 4 (1992). CrossRef J. Korec, K. A. Stasiewicz, O. Strzeżysz, P. Kula, L. R. Jaroszewicz, Electro-Steering Tapered Fiber-Optic Device with Liquid Crystal Cladding, Journal of Sensors 2019: 1-11 (2019) CrossRef Ch. Veilleux, J. Lapierre, J. Bures, Liquid-crystal-clad tapered fibers, Opt. Lett. 11, 733-735 (1986) CrossRef J. F Henninot, D. Louvergneaux, N. Tabiryan, M. Warenghem, Controlled leakage of a tapered optical fiber with liquid crystal cladding, Molecular Crystals and Liquid Crystals, 282, 297-308. (1996). CrossRef Y. Wang, et.al., Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application, Opt. Express 25, 918-926 (2017) CrossRef J. Korec, K. A. Stasiewicz, O. Strzeżysz, P. Kula, L. R. Jaroszewicz, . E. Moś, Tapered fibre liquid crystal optical device, Proc. SPIE 10681 (2018) CrossRef G. Assanto, A. Picardi, R. Barboza, A. Alberucci, Electro-optic steering of Nematicons, Phot. Lett. Poland 4, 1 (2012). CrossRef A.Ghanadzadeh Gilani, M.S. Beevers, The Electro-optical kerr effect in eutectic nematic mixtures of E7 and E8,J ournal of Molecular Liquids, 92, 3 (2001). CrossRef E. C. Mägi, P. Steinvurzel, and B.J. Eggleton, Tapered photonic crystal fibers, Opt. Express 784, 12, 5 (2004). CrossRef Y. Li and J. Lit, Transmission properties of a multimode optical-fiber taper, J. Opt. Soc. Am. A 2, (1985). CrossRef J. Korec, K. A. Stasiewicz, and L. R. Jaroszewicz, Temperature influence on optical power spectrum of the tapered fiber device with a liquid crystal cladding, Proc. SPIE 11045, 110450I (2019) CrossRef L.M. Blinov, Liquid crystals: physical properties and their possibilities in application, Advances in Liquid Crystal Research and Applications, (1981). CrossRef
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Liquid crystal"

1

Legge, Coulton Heath. "Structural modifications in liquid crystals and liquid crystal polymers". Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wu, Haixia. "Anchoring Behavior of Chiral Liquid Crystal at Polymer Surface: In Polymer Dispersed Chiral Liquid Crystal Films". Thesis, Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-04082004-154054/unrestricted/wu%5Fhaixia%5F200405%5Fmast.pdf.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--Textile and Fiber Engineering, Georgia Institute of Technology, 2004.
Griffin, Anselm, Committee Member; Srinivasarao, Mohan, Committee Chair; Park, Jung O., Committee Member. Includes bibliographical references (leaves 101-105).
Style APA, Harvard, Vancouver, ISO itp.
3

Cosquer, Guirec Yann. "Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts". Thesis, University of Hull, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322457.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cronin, Thomas. "Liquid crystal biosensors". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/liquid-crystal-biosensors(428e3ba0-bf7e-4dda-9eae-c44c9713c7bb).html.

Pełny tekst źródła
Streszczenie:
The aim of the thesis was to identify and hence investigate the physical properties of liquid crystals that influence their potential as components of biosensor devices. Silicon surfaces presenting photolithographically fabricated arrays of 50nm thick gold spots were used as the model for a biosensor that detects the surface binding of a biological analyte. The spots ranged in diameter from 2μm to 16μm and their spatial separation varied between 5μm to 40μm. A Self Assembled Monolayer (SAM) of the thiol 3-mercaoptopropionic acid was used to control the surface chemistry of the gold. The responses of the nematic liquid crystals 5CB, E7, ZLI 1695, ZLI 1132 and MDA 01-2012 to were measured by optical microscopy. The spots were seen to induce a tilted planar alignment in the liquid crystals in their nematic phase for spot diameters down to 4μm and for all separations. Anchoring transitions between different tilt angles were observed between spots for some arrays. This was linked to a change in anchoring energy at the gold, possibly stemming from the angle of gold deposition. When heated through the nematic to isotropic phase transition cross defects were observed to nucleate on the gold spots for all spot sizes above 4μm. On cooling through the transition grid patterns of defects were observed to nucleate pinned between the spots for arrays of spots with length scales between 10μm and 20μm. The birefringence and elastic constants K11 and K33 of the liquid crystals were measured for temperatures up to their nematic to isotropic transition points. The birefringences of the liquid crystals at the transition were found to range between 0.003 and 0.007. The device thickness was varied between 7μm and 40μm. Values for the elastic constants were found to range between 1pN and 4pN. The intensity of monochromatic light (670nm) reflected from the arrays as the liquid crystals were cooled through the phase transition was found to increase for smaller values of the elastic constants and found to be highest where the grid of defects on the array was observed most clearly. The effect on the intensity of the birefringence and cell thickness was shown to be small compared to the effect of elasticity. Two possible biosensor designs are proposed. The first would identify the presence of a biological analyte at a surface by the change in alignment of a liquid crystal. This type of sensor would be optimised by carefully controlling the anchoring energy of the liquid crystal at the surface to minimise the quantity of surface binding required to induce an anchoring transition. The second would detect the presence at a patterned surface of an analyte by the defects that form over the pattern as the liquid crystal changes between the nematic to isotropic phases. This type of sensor would be optimised by choosing a liquid crystal with small elastic constants at the phase transition and by designing a patterned surface with length scales between 10microns and 20microns.
Style APA, Harvard, Vancouver, ISO itp.
5

Ford, A. D. "Liquid crystal lasers". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599106.

Pełny tekst źródła
Streszczenie:
This thesis examines the emission properties of liquid crystal (LC) lasers. The aim is to investigate correlations between the emission properties of the laser, in particular the threshold energy and the slope efficiency, and the macroscopic physical properties of the liquid crystal host. Using the threshold gain term obtained for a distributed feedback laser in the context of the coupled mode theory, an expression for the threshold energy (Eth) is obtained, in the form Eth d + 1/Δn²d² where d is the cell thickness and Δn is the birefringence. The slope efficiency is considered to be inversely proportional to the threshold energy and thus the laser emission properties are evaluated in the context of the host physical parameters. These relationships provide fits that are in good agreement with experimental data for the threshold energy and slope efficiency dependence on cell thickness. It is shown theoretically that a threshold-less laser can be achieved for large cell thicknesses if the absorption losses are neglected. For a given cell thickness, the emission properties from a range of monomesogens, nematogen mixtures and bimesogens provide evidence that LCs with high birefringence give rise to a low threshold energy. This is in accordance with the above expression. However, examining the emission properties of a high birefringence LC laser, suggest that a high birefringence does not necessarily give rise to high slope efficiency. The slope efficiency is shown to follow the relation, ηs = P₃/Eth where P3 depends on parameters such as saturation intensity and addition loss mechanisms. One possible loss mechanism highlighted in this thesis is associated to the elastic moduli of the host LC. This parameter provides an indication of the structural integrity of the helical structure of the LC host. The bimesogen with the largest elastic moduli gives rise to a slope efficiency of 20%. In addition to the chiral nematic phase providing the host structure for the band edge laser, the emission properties from three addition LC lasers, using alternative LC phase is also shown; the one dimensional chiral smectic C phase, the three dimensional blue phase I and the random laser that utilises the high scattering texture of the smectic A phase.
Style APA, Harvard, Vancouver, ISO itp.
6

Kirby, Neil Andrew. "Liquid crystal polymers". Thesis, University of Sussex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Higgenbottom, Morris Scott. "Liquid crystal modulation of retroreflection : a low-power communication/location technology". Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/16695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Zhijian. "Photo-aligned LC cell with weak anchoring energy and specific profiles : physics & applications /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?ECED%202006%20LIU.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Reznikov, Dmytro. "Effect of surface alignment layer on electro-optical properties of ferroelectric liquid crystal displays". [Kent, Ohio] : Kent State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1227562895.

Pełny tekst źródła
Streszczenie:
Thesis (Ph.D.)--Kent State University, 2008.
Title from PDF t.p. (viewed Jan 5, 2010). Advisor: Philip J. Bos. Keywords: liquid crystal, smectic, display, ferroelectric. Includes bibliographical references (p. 190-194).
Style APA, Harvard, Vancouver, ISO itp.
10

Dong, Shaosheng. "Liquid Crystal Polymers And Dendritic Liquid Crystals: Synthesis, Morphology, Rheology And Binary Mixtures". online version, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1094584392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Liquid crystal"

1

Kaneko, E. Liquid crystal TV displays: Principles and applications of liquid crystal displays. Tokyo: KTK Scientific Publishers, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chen, Robert H. Liquid crystal displays: Fundamental physics and technology. Hoboken, N.J: Wiley, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ermakov, Sergey F., i Nikolai K. Myshkin. Liquid-Crystal Nanomaterials. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74769-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Muševič, Igor. Liquid Crystal Colloids. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54916-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Platé, N. A., red. Liquid-Crystal Polymers. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1103-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, Robert H. Liquid Crystal Displays. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118084359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

M, Terentjev E., red. Liquid crystal elastomers. Oxford: Oxford University Press, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alʹfredovich, Platė Nikolaĭ, i Schnur S. L, red. Liquid-crystal polymers. New York: Plenum Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Liquid crystal dispersions. Singapore: World Scientific, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cox, M. K. Liquid crystal polymers. Oxford: Pergamon Press, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Liquid crystal"

1

Gooch, Jan W. "Liquid Crystal". W Encyclopedic Dictionary of Polymers, 429–30. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schadt, M. "Liquid Crystal Displays". W Liquid Crystals, 195–226. Heidelberg: Steinkopff, 1994. http://dx.doi.org/10.1007/978-3-662-08393-2_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Benzie, Philip W., i Steve J. Elston. "Optics of Liquid Crystals and Liquid Crystal Displays". W Handbook of Visual Display Technology, 1979–2002. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_85.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Benzie, Philip W., i Steve J. Elston. "Optics of Liquid Crystals and Liquid Crystal Displays". W Handbook of Visual Display Technology, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35947-7_85-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Benzie, Philip W., i Steve J. Elston. "Optics of Liquid Crystals and Liquid Crystal Displays". W Handbook of Visual Display Technology, 1365–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-79567-4_85.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cristaldi, David J. R., Salvatore Pennisi i Francesco Pulvirenti. "Liquid Crystals". W Liquid Crystal Display Drivers, 1–31. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2255-4_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Day, Sally E. "Liquid Crystal Applications". W Electronic Materials, 405–16. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_27.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gregory, Peter. "Liquid Crystal Dyes". W High-Technology Applications of Organic Colorants, 7–13. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3822-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cameron, Neil. "Liquid Crystal Display". W Arduino Applied, 79–100. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3960-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

McRoberts, Michael. "Liquid Crystal Displays". W Beginning Arduino, 165–81. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-5017-3_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Liquid crystal"

1

Nowinowski-Kruszelnicki, Edward, Andrzej Walczak, Aleksander Kiezun i Leszek R. Jaroszewicz. "Light transmission loss in liquid crystal waveguides". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mucha, Maria, i E. Nastal-Grosicka. "Polymer-dispersed liquid crystal displays: switching times effect". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Aristov, Veaceslav L., S. P. Kurchatkin, M. V. Mitrokhin i V. P. Sevostyanov. "Electrohydrodynamic formation of liquid crystal focal conic domains". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lagerwall, Sven T., M. Matuszczyk i T. Matuszczyk. "Old and new ideas in ferroelectric liquid crystal technology". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Walczak, Andrzej, Edward Nowinowski-Kruszelnicki i Aleksander Kiezun. "Director field in a liquid crystal: direct measurement method". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300000.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Schirmer, Juergen, Peter Kohns, Theodor Schmidt-Kaler, Sergei Y. Yakovenko, Anatoli A. Muravski, Roman S. Dabrowski, Povilas Adomenas i Zofia Stolarz. "Achromatic phase retarders using double-layer liquid crystal cells". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Klosowicz, Stanislaw J., i Jerzy Zielinski. "Liquid crystal polymer composites: is the baby growing up?" W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Miniewicz, Andrzej, A. Januszko, P. Sikorski i Janusz Parka. "Self-diffraction of light in twisted nematic liquid crystal". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tian, YanQing, Jianxin Guo i Xinmin Huang. "Progress in liquid crystal material and display studies in China". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Aristov, Veaceslav L., S. P. Kurchatkin, M. V. Mitrokhin i V. P. Sevostyanov. "Field-controlled light scattering from polymer-dispersed liquid crystal displays". W Liquid Crystals, redaktorzy Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski i Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Liquid crystal"

1

Taheri, Bahman, i Volodymyr Bodnar. Adaptive Liquid Crystal Windows. Office of Scientific and Technical Information (OSTI), grudzień 2011. http://dx.doi.org/10.2172/1080460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hood, Patrick J. High-Performance Liquid Crystal Adhesives. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1999. http://dx.doi.org/10.21236/ada363644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Naciri, J., G. Crawford, R. Shashidhar i B. R. Ratna. Electroclinic Liquid Crystal Materials for Electrooptic Imaging. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1993. http://dx.doi.org/10.21236/ada361351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Meyer, Robert B. Development of a Liquid Crystal Smart Reflector. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1996. http://dx.doi.org/10.21236/ada308782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Goodman, Joseph W. Ferroelectric Liquid Crystal Optical Interconnect Switching Systems. Fort Belvoir, VA: Defense Technical Information Center, luty 1993. http://dx.doi.org/10.21236/ada263751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rusek, J. J., i M. Macler. Propellant Containment Via Thermotropic Liquid Crystal Polymers. Fort Belvoir, VA: Defense Technical Information Center, marzec 1998. http://dx.doi.org/10.21236/ada341792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jacobs, Stephen, i James E. Miller. Optoelectronic Workshops (14th). Ferroelectric Liquid Crystal IR chopper. Fort Belvoir, VA: Defense Technical Information Center, luty 1989. http://dx.doi.org/10.21236/ada209035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mazurek, N., i T. J. Zammit. Development of Large Area, Tiled, Liquid Crystal Display. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1993. http://dx.doi.org/10.21236/ada277564.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bernkopf, Jan, i Patrick Mullen. Low Voltage, High Resistance, Polymer Dispersed Liquid Crystal. Fort Belvoir, VA: Defense Technical Information Center, marzec 1994. http://dx.doi.org/10.21236/ada291946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Geis, M. W., R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood i B. R. Kimball. 30 to 50 ns Liquid-Crystal Optical Switches. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada524121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii