Gotowa bibliografia na temat „Liquid bridge dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Liquid bridge dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Liquid bridge dynamics"
Teschke, Omar, David Mendez Soares, Whyllerson Evaristo Gomes i Juracyr Ferraz Valente Filho. "Floating liquid bridge charge dynamics". Physics of Fluids 28, nr 1 (styczeń 2016): 012105. http://dx.doi.org/10.1063/1.4938402.
Pełny tekst źródłaAKITOMO, Dai, Ichiro UENO i Hiroshi KAWAMURA. "Dynamics of nano-scale liquid bridge". Proceedings of the Thermal Engineering Conference 2004 (2004): 155–56. http://dx.doi.org/10.1299/jsmeted.2004.155.
Pełny tekst źródłaCoelho, Rodrigo C. V., Luís A. R. G. Cordeiro, Rodrigo B. Gazola i Paulo I. C. Teixeira. "Dynamics of two-dimensional liquid bridges". Journal of Physics: Condensed Matter 34, nr 20 (14.03.2022): 205001. http://dx.doi.org/10.1088/1361-648x/ac594b.
Pełny tekst źródłaVincent, L., L. Duchemin i S. Le Dizès. "Forced dynamics of a short viscous liquid bridge". Journal of Fluid Mechanics 761 (18.11.2014): 220–40. http://dx.doi.org/10.1017/jfm.2014.622.
Pełny tekst źródłaZhang, X., R. S. Padgett i O. A. Basaran. "Nonlinear deformation and breakup of stretching liquid bridges". Journal of Fluid Mechanics 329 (25.12.1996): 207–45. http://dx.doi.org/10.1017/s0022112096008907.
Pełny tekst źródłaConnell, Joseph, Murray Rudman i Ranganathan Prabhakar. "Influence of volume and aspect ratio of liquid bridges on capillary breakup rheometry". Physics of Fluids 34, nr 3 (marzec 2022): 033105. http://dx.doi.org/10.1063/5.0084878.
Pełny tekst źródłaDodds, Shawn, Marcio S. Carvalho i Satish Kumar. "The dynamics of three-dimensional liquid bridges with pinned and moving contact lines". Journal of Fluid Mechanics 707 (2.08.2012): 521–40. http://dx.doi.org/10.1017/jfm.2012.296.
Pełny tekst źródłaShaikhitdinov R. Z. i Sharipov T. I. "Dynamics of liquid mass transfer in a water bridge". Technical Physics Letters 48, nr 6 (2022): 31. http://dx.doi.org/10.21883/tpl.2022.06.53461.19161.
Pełny tekst źródłaBusic, Borislav, Joel Koplik i Jayanth R. Banavar. "Molecular dynamics simulation of liquid bridge extensional flows". Journal of Non-Newtonian Fluid Mechanics 109, nr 1 (styczeń 2003): 51–89. http://dx.doi.org/10.1016/s0377-0257(02)00163-5.
Pełny tekst źródłaTHIESSEN, DAVID B., WEI WEI i PHILIP L. MARSTON. "Active Electrostatic Control of Liquid Bridge Dynamics and Stability". Annals of the New York Academy of Sciences 1027, nr 1 (listopad 2004): 495–510. http://dx.doi.org/10.1196/annals.1324.039.
Pełny tekst źródłaRozprawy doktorskie na temat "Liquid bridge dynamics"
Valsamis, Jean-Baptiste. "A study of liquid bridge dynamics: an application to micro-assembly". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210117.
Pełny tekst źródłaThe goal of this work is to describe the dynamics of liquid bridges in the application of micro-assembly processes. The description is obtained using the Kelvin-Voigt model, with a spring, a damper, and a mass connected in parallel, supported by numerical simulations, analytical approximations and experiments.
The works is divided into three parts. First we present important aspects of microfluidics, as well as the constitutive equations and an overview of numerical approaches used to describe fluid flow problems with moving interfaces.
The second part is devoted to the capillary rise case, intended to validate and to compare the numerical approaches to analytical laws and experimental results. The implementation of the slipping and the dynamic contact angles is discussed.
The last part focuses on the dynamics of the liquid bridge. The liquid bridge is confined between two circular and parallel plates and presents an axial symmetry. The description reveals that the stiffness depends on the surface tension and on the shape of the air/liquid interface, the damping coefficient depends on the viscosity and the volume of liquid and the equivalent mass depends on the density and the volume.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Almeida, Alexandre Barros de. "Análise e modelagem termodinâmica de um modelo de gás de rede para pontes líquidas". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-14032013-153056/.
Pełny tekst źródłaThis work studied a three dimension lattice gas model to simulate macroscopic liquid systems. We used the model to study the energy and the forces involved during the process of liquid bridge formation and rupture between two parallel planes. The motivarion of this study was a physiological processes which occur inside the mammals lungs. Furthermore, a study was made to elucidate thermodynamic properties of the model. Concerning to physiological application, it was observed that the free energy of liquid bridge is smaller than the free energy of the droplet, for different liquid systems. With this observation, was proposed that this energy is dissipated as an acoustic energy. This sound should also exist in the rupture of liquid bridge. Comparing the free energy of liquid bridge in the formation and rupture process was observed a hysteresis curve. It was also found an effect of finite size in the formation of small size of the liquid bridge. In the numerical model, the liquid bridge is always formed earlier than expected from the analytical model. In the thermodynamic study, the model was simplified removing both parallel planes. First, the simplest case of this model was studied, only two liquid particles in a large gas lattice. In this case, the specific heat and internal energy was numerically studied and the results was compared with analytical calculation. Subsequently, we carried out a study of the phase transition of this system. Then, the free energy and the force generated between two parallel planes due the presence of the liquid bridge. This studied was performed using two different temperatures and two distinct methods. In the first method the entropy was neglected, and in the second method not. The second method was the ``Overlapping Distribution\'\'. It was concluded that the entropy has a very small effect in the studied conditions. The model is viable for modeling fluids at macroscopic level and therefore can be used to quantify not only the internal forces of the lung structures, but evaluate the energies released after the rupture process of the formation of these bridges.
Yasnou, Viktar. "Development and improvement of the experimental techniques for fluid examination". Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209175.
Pełny tekst źródłaPart A is motivated by preparation of the experiment JEREMI (The Japanese-European Research Experiment on Marangoni Instability) to be performed on the International Space Station (ISS). One of the objectives of the experiment is the control of the threshold of an oscillatory flow in the liquid zone by the temperature and velocity of the ambient gas. The developed set-up for a liquid bridge allows to blow gas parallel to the interface at different temperatures and investigate the effects of viscous and thermal stresses on the stability of the flow. The present study reports on isothermal experiments with moving gas and non-isothermal experiments with motionless gas when the cooling of the interface occurs due to evaporation. The discussion concerning the experimental observations is based on two sources: an interface shape measured optically and the records on thermocouples giving an indication of how temperature and frequency evolve over time.
Part B is related to ground-based studies in course of preparation and realization of the microgravity experiment DCMIX (Diffusion Coefficient in MIXtures). DCMIX project is a series of experiments aimed at measuring of the Soret coefficients in liquid mixtures on the ISS which involves a wide international group of scientists. Two experiments have been recently completed and the third one is under preparation In the course of this thesis all the aspects of the previously existing set-up for measurements of the Soret (thermal diffusion) and diffusion coefficients in binary mixtures were studied, uncertainties were identified and improvements were done to obtain reliable results. The final design has been validated by measuring coefficients in three binary benchmark mixtures and water-isopropanol. The obtained results agree well with literature data.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Zhang, Yi. "Static and Dynamic Behaviour of Inter-granular Liquid Bridges: Hysteresis of Contact Angle and Capillary Forces". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16151.
Pełny tekst źródłaKsiążki na temat "Liquid bridge dynamics"
Hyder, Md Nasim. Statics and dynamics of liquid bridges. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaDavid, Alexander James Iwan, i United States. National Aeronautics and Space Administration., red. Dynamics and statics of nonaxisymmetric liquid bridges: Second annual report ... Huntsville, Ala: Center for Microgravity and Materials Research, University of Alabama in Huntsville, 1994.
Znajdź pełny tekst źródłaAndy, Resnik, Kaukler William F i United States. National Aeronautics and Space Administration., red. Stability limits and dynamics of nonaxisymmetric liquid bridges: First annual report ... Huntsville, Ala: Center for Microgravity and Materials Research, University of Alabama in Huntsville, 1993.
Znajdź pełny tekst źródłaL, Zhang, i United States. National Aeronautics and Space Administration., red. Nonlinear effects on the natural modes of oscillation of a finite length inviscid fluid column: Supplement II. Morgantown, WV: Mechanical & Aerospace Engineering Dept., West Virginia University, 1994.
Znajdź pełny tekst źródłaNational Aeronautics and Space Administration (NASA) Staff. Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges. Independently Published, 2018.
Znajdź pełny tekst źródłaStability limits and dynamics of nonaxisymmetric liquid bridges: Final report. Huntsville, AL: Center for Microgravity and Materials Research, University of Alabama in Huntsville, 1996.
Znajdź pełny tekst źródłaNonlinear effects on the natural modes of oscillation of a finite length inviscid fluid column: Supplement II. Morgantown, WV: Mechanical & Aerospace Engineering Dept., West Virginia University, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Liquid bridge dynamics"
Shevtsova, Valentina M., Mohamed Mojahed, Denis E. Melnikov i Jean Claude Legros. "The Choice of the Critical Mode of Hydrothermal Instability in Liquid Bridge". W Interfacial Fluid Dynamics and Transport Processes, 241–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45095-5_12.
Pełny tekst źródłaAndrés, Angel Sanz. "Static and Dynamic Response of Liquid Bridges". W Microgravity Fluid Mechanics, 3–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_1.
Pełny tekst źródłaMeseguer, J., i J. M. Perales. "Viscosity Effects on the Dynamics of Long Axisymmetric Liquid Bridges". W Microgravity Fluid Mechanics, 37–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_4.
Pełny tekst źródłaKuhlmann, Hendrik C., i Christian Nienhüser. "The Influence of Static and Dynamic Free-Surface Deformations on the Three-Dimensional Thermocapillary Flow in Liquid Bridges". W Interfacial Fluid Dynamics and Transport Processes, 213–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45095-5_11.
Pełny tekst źródłaBaer, Tomas, i William L. Hase. "The Dissociation of Small and Large Clusters". W Unimolecular Reaction Dynamics. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195074949.003.0012.
Pełny tekst źródłaKruse, Hans-Peter, i Jürgen Scheurle. "The Hamiltonian structure of the dynamics of ideal liquid bridges". W Equadiff 99, 1182–91. World Scientific Publishing Company, 2000. http://dx.doi.org/10.1142/9789812792617_0223.
Pełny tekst źródłaFomin, Vladislav V., i Marja Matinmikko. "The Role of Standards in the Development of New Informational Infrastructure". W Advances in Systems Analysis, Software Engineering, and High Performance Computing, 149–60. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-6098-4.ch006.
Pełny tekst źródłaGaines, Susan M., Geoffrey Eglinton i Jürgen Rullkötter. "Deep Sea Mud: Biomarker Clues to Ancient Climates". W Echoes of Life. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780195176193.003.0011.
Pełny tekst źródłaStreszczenia konferencji na temat "Liquid bridge dynamics"
Lutfurakhmanov, Artur, Yechun Wang i Douglas L. Schulz. "Bridge Dynamics for Capillary-Based Liquid Deposition". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86144.
Pełny tekst źródłaWang, Yechun, Artur Lutfurakhmanov i Iskander S. Akhatov. "Spectral Boundary Element Method for Liquid Bridge Dynamics Between Capillary and Substrate". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63787.
Pełny tekst źródłaGabbard, Chase, i Joshua Bostwick. "Video: Thin film flow between fibers: inertial sheets and liquid bridge patterns". W 75th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2022. http://dx.doi.org/10.1103/aps.dfd.2022.gfm.v0085.
Pełny tekst źródłaTorabi, Mohsen, Ahmed A. Hemeda, Anupam Mishra, Ting Liu i Yanbao Ma. "LIQUID BRIDGE ERUPTION FOR MESOSCALE GRAVURE PRINTING USING MULTI-BODY DISSIPATIVE PARTICLE DYNAMICS". W 4th Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/tfec2019.nmf.028350.
Pełny tekst źródłaJoly, Fre´de´ric, Wei Shyy i Ge´rard Labrosse. "The Effect of Thermo-Solutal Capillary Transport on the Dynamics of Liquid Bridge". W ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56583.
Pełny tekst źródłaJi, C. Y., i Y. Y. Yan. "A Molecular Dynamics Simulation of Droplets Merging in Mist Flow of Flow Boiling Microchannel". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62120.
Pełny tekst źródłaWatanabe, Takeo, i Yoshiaki Oka. "Numerical Analysis of Crust Behavior of Molten Core and Concrete Interaction by Using MPS Method". W 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30384.
Pełny tekst źródłaJih, C. Edward, K. Chen, T. Abraham, V. Siddapureddy, R. Poulson i V. A. Sankaran. "Design of Liquid Cooled Coldplate for the Inverter of the Hybrid Electric Vehicle". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1540.
Pełny tekst źródłaVasudev, Abhay, Ashish Jagtiani, Li Du, Jun Hu, Yanan Gao i Jiang Zhe. "Electrowetting of Room Temperature Ionic Liquids (RTILs) for Capillary Force Manipulation". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10699.
Pełny tekst źródłaGrivel, Morgane, David Jeon i Morteza Gharib. "Video: Manipulation of dynamic liquid bridges by patterned surface properties". W 68th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2015. http://dx.doi.org/10.1103/aps.dfd.2015.gfm.v0039.
Pełny tekst źródłaRaporty organizacyjne na temat "Liquid bridge dynamics"
Shmulevich, Itzhak, Shrini Upadhyaya, Dror Rubinstein, Zvika Asaf i Jeffrey P. Mitchell. Developing Simulation Tool for the Prediction of Cohesive Behavior Agricultural Materials Using Discrete Element Modeling. United States Department of Agriculture, październik 2011. http://dx.doi.org/10.32747/2011.7697108.bard.
Pełny tekst źródła