Artykuły w czasopismach na temat „Lipschitz neural network”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lipschitz neural network”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhu, Zelong, Chunna Zhao i Yaqun Huang. "Fractional order Lipschitz recurrent neural network with attention for long time series prediction". Journal of Physics: Conference Series 2813, nr 1 (1.08.2024): 012015. http://dx.doi.org/10.1088/1742-6596/2813/1/012015.
Pełny tekst źródłaZhang, Huan, Pengchuan Zhang i Cho-Jui Hsieh. "RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 5757–64. http://dx.doi.org/10.1609/aaai.v33i01.33015757.
Pełny tekst źródłaAraujo, Alexandre, Benjamin Negrevergne, Yann Chevaleyre i Jamal Atif. "On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 8 (18.05.2021): 6661–69. http://dx.doi.org/10.1609/aaai.v35i8.16824.
Pełny tekst źródłaXu, Yuhui, Wenrui Dai, Yingyong Qi, Junni Zou i Hongkai Xiong. "Iterative Deep Neural Network Quantization With Lipschitz Constraint". IEEE Transactions on Multimedia 22, nr 7 (lipiec 2020): 1874–88. http://dx.doi.org/10.1109/tmm.2019.2949857.
Pełny tekst źródłaMohammad, Ibtihal J. "Neural Networks of the Rational r-th Powers of the Multivariate Bernstein Operators". BASRA JOURNAL OF SCIENCE 40, nr 2 (1.09.2022): 258–73. http://dx.doi.org/10.29072/basjs.20220201.
Pełny tekst źródłaIbtihal.J.M i Ali J. Mohammad. "Neural Network of Multivariate Square Rational Bernstein Operators with Positive Integer Parameter". European Journal of Pure and Applied Mathematics 15, nr 3 (31.07.2022): 1189–200. http://dx.doi.org/10.29020/nybg.ejpam.v15i3.4425.
Pełny tekst źródłaLiu, Kanglin, i Guoping Qiu. "Lipschitz constrained GANs via boundedness and continuity". Neural Computing and Applications 32, nr 24 (24.05.2020): 18271–83. http://dx.doi.org/10.1007/s00521-020-04954-z.
Pełny tekst źródłaOthmani, S., N. E. Tatar i A. Khemmoudj. "Asymptotic behavior of a BAM neural network with delays of distributed type". Mathematical Modelling of Natural Phenomena 16 (2021): 29. http://dx.doi.org/10.1051/mmnp/2021023.
Pełny tekst źródłaXia, Youshen. "An Extended Projection Neural Network for Constrained Optimization". Neural Computation 16, nr 4 (1.04.2004): 863–83. http://dx.doi.org/10.1162/089976604322860730.
Pełny tekst źródłaLi, Peiluan, Yuejing Lu, Changjin Xu i Jing Ren. "Bifurcation Phenomenon and Control Technique in Fractional BAM Neural Network Models Concerning Delays". Fractal and Fractional 7, nr 1 (22.12.2022): 7. http://dx.doi.org/10.3390/fractalfract7010007.
Pełny tekst źródłaWei Bian i Xiaojun Chen. "Smoothing Neural Network for Constrained Non-Lipschitz Optimization With Applications". IEEE Transactions on Neural Networks and Learning Systems 23, nr 3 (marzec 2012): 399–411. http://dx.doi.org/10.1109/tnnls.2011.2181867.
Pełny tekst źródłaChen, Xin, Yujuan Si, Zhanyuan Zhang, Wenke Yang i Jianchao Feng. "Improving Adversarial Robustness of ECG Classification Based on Lipschitz Constraints and Channel Activation Suppression". Sensors 24, nr 9 (6.05.2024): 2954. http://dx.doi.org/10.3390/s24092954.
Pełny tekst źródłaZhang, Chi, Wenjie Ruan i Peipei Xu. "Reachability Analysis of Neural Network Control Systems". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 12 (26.06.2023): 15287–95. http://dx.doi.org/10.1609/aaai.v37i12.26783.
Pełny tekst źródłaYu, Hongshan, Jinzhu Peng i Yandong Tang. "Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network". Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/959507.
Pełny tekst źródłaXin, YU, WU Lingzhen, XIE Mian, WANG Yanlin, XU Liuming, LU Huixia i XU Chenhua. "Smoothing Neural Network for Non‐Lipschitz Optimization with Linear Inequality Constraints". Chinese Journal of Electronics 30, nr 4 (lipiec 2021): 634–43. http://dx.doi.org/10.1049/cje.2021.05.005.
Pełny tekst źródłaZhao, Chunna, Junjie Ye, Zelong Zhu i Yaqun Huang. "FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural Network with Frequency-Domain Gated Attention Mechanism for Time Series Forecasting". Fractal and Fractional 8, nr 7 (22.07.2024): 433. http://dx.doi.org/10.3390/fractalfract8070433.
Pełny tekst źródłaLiang, Youwei, i Dong Huang. "Large Norms of CNN Layers Do Not Hurt Adversarial Robustness". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 10 (18.05.2021): 8565–73. http://dx.doi.org/10.1609/aaai.v35i10.17039.
Pełny tekst źródłaZhuo, Li’an, Baochang Zhang, Chen Chen, Qixiang Ye, Jianzhuang Liu i David Doermann. "Calibrated Stochastic Gradient Descent for Convolutional Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9348–55. http://dx.doi.org/10.1609/aaai.v33i01.33019348.
Pełny tekst źródłaLippl, Samuel, Benjamin Peters i Nikolaus Kriegeskorte. "Can neural networks benefit from objectives that encourage iterative convergent computations? A case study of ResNets and object classification". PLOS ONE 19, nr 3 (21.03.2024): e0293440. http://dx.doi.org/10.1371/journal.pone.0293440.
Pełny tekst źródłaFeyzdar, Mahdi, Ahmad Reza Vali i Valiollah Babaeipour. "Identification and Optimization of Recombinant E. coli Fed-Batch Fermentation Producing γ-Interferon Protein". International Journal of Chemical Reactor Engineering 11, nr 1 (18.06.2013): 123–34. http://dx.doi.org/10.1515/ijcre-2012-0081.
Pełny tekst źródłaStamova, Ivanka, Trayan Stamov i Gani Stamov. "Lipschitz stability analysis of fractional-order impulsive delayed reaction-diffusion neural network models". Chaos, Solitons & Fractals 162 (wrzesień 2022): 112474. http://dx.doi.org/10.1016/j.chaos.2022.112474.
Pełny tekst źródłaChen, Yu-Wen, Ming-Li Chiang i Li-Chen Fu. "Adaptive Formation Control for Multiple Quadrotors with Nonlinear Uncertainties Using Lipschitz Neural Network". IFAC-PapersOnLine 56, nr 2 (2023): 8714–19. http://dx.doi.org/10.1016/j.ifacol.2023.10.053.
Pełny tekst źródłaLi, Wenjing, Wei Bian i Xiaoping Xue. "Projected Neural Network for a Class of Non-Lipschitz Optimization Problems With Linear Constraints". IEEE Transactions on Neural Networks and Learning Systems 31, nr 9 (wrzesień 2020): 3361–73. http://dx.doi.org/10.1109/tnnls.2019.2944388.
Pełny tekst źródłaAkrour, Riad, Asma Atamna i Jan Peters. "Convex optimization with an interpolation-based projection and its application to deep learning". Machine Learning 110, nr 8 (19.07.2021): 2267–89. http://dx.doi.org/10.1007/s10994-021-06037-z.
Pełny tekst źródłaHumphries, Usa, Grienggrai Rajchakit, Pramet Kaewmesri, Pharunyou Chanthorn, Ramalingam Sriraman, Rajendran Samidurai i Chee Peng Lim. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks". Mathematics 8, nr 5 (14.05.2020): 801. http://dx.doi.org/10.3390/math8050801.
Pełny tekst źródłaBensidhoum, Tarek, Farah Bouakrif i Michel Zasadzinski. "Iterative learning radial basis function neural networks control for unknown multi input multi output nonlinear systems with unknown control direction". Transactions of the Institute of Measurement and Control 41, nr 12 (19.02.2019): 3452–67. http://dx.doi.org/10.1177/0142331219826659.
Pełny tekst źródłaZhang, Fan, Heng-You Lan i Hai-Yang Xu. "Generalized Hukuhara Weak Solutions for a Class of Coupled Systems of Fuzzy Fractional Order Partial Differential Equations without Lipschitz Conditions". Mathematics 10, nr 21 (30.10.2022): 4033. http://dx.doi.org/10.3390/math10214033.
Pełny tekst źródłaLaurel, Jacob, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh i Sasa Misailovic. "A general construction for abstract interpretation of higher-order automatic differentiation". Proceedings of the ACM on Programming Languages 6, OOPSLA2 (31.10.2022): 1007–35. http://dx.doi.org/10.1145/3563324.
Pełny tekst źródłaTatar, Nasser-Eddine. "Long Time Behavior for a System of Differential Equations with Non-Lipschitzian Nonlinearities". Advances in Artificial Neural Systems 2014 (14.09.2014): 1–7. http://dx.doi.org/10.1155/2014/252674.
Pełny tekst źródłaLi, Jia, Cong Fang i Zhouchen Lin. "Lifted Proximal Operator Machines". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 4181–88. http://dx.doi.org/10.1609/aaai.v33i01.33014181.
Pełny tekst źródłaCantarini, Marco, Lucian Coroianu, Danilo Costarelli, Sorin G. Gal i Gianluca Vinti. "Inverse Result of Approximation for the Max-Product Neural Network Operators of the Kantorovich Type and Their Saturation Order". Mathematics 10, nr 1 (25.12.2021): 63. http://dx.doi.org/10.3390/math10010063.
Pełny tekst źródłaZhao, Liquan, i Yan Liu. "Spectral Normalization for Domain Adaptation". Information 11, nr 2 (27.01.2020): 68. http://dx.doi.org/10.3390/info11020068.
Pełny tekst źródłaPantoja-Garcia, Luis, Vicente Parra-Vega, Rodolfo Garcia-Rodriguez i Carlos Ernesto Vázquez-García. "A Novel Actor—Critic Motor Reinforcement Learning for Continuum Soft Robots". Robotics 12, nr 5 (9.10.2023): 141. http://dx.doi.org/10.3390/robotics12050141.
Pełny tekst źródłaVan, Mien. "Higher-order terminal sliding mode controller for fault accommodation of Lipschitz second-order nonlinear systems using fuzzy neural network". Applied Soft Computing 104 (czerwiec 2021): 107186. http://dx.doi.org/10.1016/j.asoc.2021.107186.
Pełny tekst źródłaJiao, Yulin, Feng Xiao, Wenjuan Zhang, Shujuan Huang, Hao Lu i Zhaoting Lu. "Image Inpainting based on Gated Convolution and spectral Normalization". Frontiers in Computing and Intelligent Systems 6, nr 2 (5.12.2023): 96–100. http://dx.doi.org/10.54097/wkezn917.
Pełny tekst źródłaLi, Cuiying, Rui Wu i Ranzhuo Ma. "Existence of solutions for Caputo fractional iterative equations under several boundary value conditions". AIMS Mathematics 8, nr 1 (2022): 317–39. http://dx.doi.org/10.3934/math.2023015.
Pełny tekst źródłaTong, Qingbin, Feiyu Lu, Ziwei Feng, Qingzhu Wan, Guoping An, Junci Cao i Tao Guo. "A Novel Method for Fault Diagnosis of Bearings with Small and Imbalanced Data Based on Generative Adversarial Networks". Applied Sciences 12, nr 14 (21.07.2022): 7346. http://dx.doi.org/10.3390/app12147346.
Pełny tekst źródłaPauli, Patricia, Anne Koch, Julian Berberich, Paul Kohler i Frank Allgower. "Training Robust Neural Networks Using Lipschitz Bounds". IEEE Control Systems Letters 6 (2022): 121–26. http://dx.doi.org/10.1109/lcsys.2021.3050444.
Pełny tekst źródłaNegrini, Elisa, Giovanna Citti i Luca Capogna. "System identification through Lipschitz regularized deep neural networks". Journal of Computational Physics 444 (listopad 2021): 110549. http://dx.doi.org/10.1016/j.jcp.2021.110549.
Pełny tekst źródłaZou, Dongmian, Radu Balan i Maneesh Singh. "On Lipschitz Bounds of General Convolutional Neural Networks". IEEE Transactions on Information Theory 66, nr 3 (marzec 2020): 1738–59. http://dx.doi.org/10.1109/tit.2019.2961812.
Pełny tekst źródłaLaurel, Jacob, Rem Yang, Gagandeep Singh i Sasa Misailovic. "A dual number abstraction for static analysis of Clarke Jacobians". Proceedings of the ACM on Programming Languages 6, POPL (16.01.2022): 1–30. http://dx.doi.org/10.1145/3498718.
Pełny tekst źródłaGarcía Cabello, Julia. "Mathematical Neural Networks". Axioms 11, nr 2 (17.02.2022): 80. http://dx.doi.org/10.3390/axioms11020080.
Pełny tekst źródłaMa, Shuo, i Yanmei Kang. "Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition". Communications in Nonlinear Science and Numerical Simulation 57 (kwiecień 2018): 372–87. http://dx.doi.org/10.1016/j.cnsns.2017.10.012.
Pełny tekst źródłaNeumayer, Sebastian, Alexis Goujon, Pakshal Bohra i Michael Unser. "Approximation of Lipschitz Functions Using Deep Spline Neural Networks". SIAM Journal on Mathematics of Data Science 5, nr 2 (15.05.2023): 306–22. http://dx.doi.org/10.1137/22m1504573.
Pełny tekst źródłaSong, Xueli, i Jigen Peng. "Global Asymptotic Stability of Impulsive CNNs with Proportional Delays and Partially Lipschitz Activation Functions". Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/832892.
Pełny tekst źródłaHan, Fangfang, Bin Liu, Junchao Zhu i Baofeng Zhang. "Algorithm Design for Edge Detection of High-Speed Moving Target Image under Noisy Environment". Sensors 19, nr 2 (16.01.2019): 343. http://dx.doi.org/10.3390/s19020343.
Pełny tekst źródłaBecktor, Jonathan, Frederik Schöller, Evangelos Boukas, Mogens Blanke i Lazaros Nalpantidis. "Lipschitz Constrained Neural Networks for Robust Object Detection at Sea". IOP Conference Series: Materials Science and Engineering 929 (27.11.2020): 012023. http://dx.doi.org/10.1088/1757-899x/929/1/012023.
Pełny tekst źródłaAziznejad, Shayan, Harshit Gupta, Joaquim Campos i Michael Unser. "Deep Neural Networks With Trainable Activations and Controlled Lipschitz Constant". IEEE Transactions on Signal Processing 68 (2020): 4688–99. http://dx.doi.org/10.1109/tsp.2020.3014611.
Pełny tekst źródłaDelaney, Blaise, Nicole Schulte, Gregory Ciezarek, Niklas Nolte, Mike Williams i Johannes Albrecht. "Applications of Lipschitz neural networks to the Run 3 LHCb trigger system". EPJ Web of Conferences 295 (2024): 09005. http://dx.doi.org/10.1051/epjconf/202429509005.
Pełny tekst źródłaMallat, Stéphane, Sixin Zhang i Gaspar Rochette. "Phase harmonic correlations and convolutional neural networks". Information and Inference: A Journal of the IMA 9, nr 3 (5.11.2019): 721–47. http://dx.doi.org/10.1093/imaiai/iaz019.
Pełny tekst źródła