Gotowa bibliografia na temat „Linear Quadratic Regulator”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Linear Quadratic Regulator”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Linear Quadratic Regulator"
Alexandrova, Mariela, Nasko Atanasov, Ivan Grigorov i Ivelina Zlateva. "Linear Quadratic Regulator Procedure and Symmetric Root Locus Relationship Analysis". International Journal of Engineering Research and Science 3, nr 11 (30.11.2017): 27–33. http://dx.doi.org/10.25125/engineering-journal-ijoer-nov-2017-7.
Pełny tekst źródłaKhlebnikov, M. V., i P. S. Shcherbakov. "Linear Quadratic Regulator: II. Robust Formulations". Automation and Remote Control 80, nr 10 (październik 2019): 1847–60. http://dx.doi.org/10.1134/s0005117919100060.
Pełny tekst źródłaVissio, Giacomo, Duarte Valério, Giovanni Bracco, Pedro Beirão, Nicola Pozzi i Giuliana Mattiazzo. "ISWEC linear quadratic regulator oscillating control". Renewable Energy 103 (kwiecień 2017): 372–82. http://dx.doi.org/10.1016/j.renene.2016.11.046.
Pełny tekst źródłaOchi, Y., i K. Kanai. "Eigenstructure Assignment for Linear Quadratic Regulator". IFAC Proceedings Volumes 29, nr 1 (czerwiec 1996): 1098–103. http://dx.doi.org/10.1016/s1474-6670(17)57811-8.
Pełny tekst źródłaDanas, Aidil, Heru Dibyo Laksono i Syafii . "Perbaikan Kestabilan Dinamik Sistem Tenaga Listrik Multimesin dengan Metoda Linear Quadratic Regulator". Jurnal Nasional Teknik Elektro 2, nr 2 (1.09.2013): 72–78. http://dx.doi.org/10.20449/jnte.v2i2.88.
Pełny tekst źródłaWu, Guangyu, Lu Xiong, Gang Wang i Jian Sun. "Linear Quadratic Regulator of Discrete-Time Switched Linear Systems". IEEE Transactions on Circuits and Systems II: Express Briefs 67, nr 12 (grudzień 2020): 3113–17. http://dx.doi.org/10.1109/tcsii.2020.2973302.
Pełny tekst źródłaNAKAJIMA, Kyohei, Koichi KOBAYASHI i Yuh YAMASHITA. "Linear Quadratic Regulator with Decentralized Event-Triggering". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E100.A, nr 2 (2017): 414–20. http://dx.doi.org/10.1587/transfun.e100.a.414.
Pełny tekst źródłaI. Abdulla, Abdulla. "Linear Quadratic Regulator Using Artificial Immunize System". AL-Rafdain Engineering Journal (AREJ) 20, nr 3 (28.06.2012): 80–91. http://dx.doi.org/10.33899/rengj.2012.50481.
Pełny tekst źródłaAbdelrahman, M., G. Aryassov, M. Tamre i I. Penkov. "System Vibration Control Using Linear Quadratic Regulator". International Journal of Applied Mechanics and Engineering 27, nr 3 (29.08.2022): 1–8. http://dx.doi.org/10.2478/ijame-2022-0031.
Pełny tekst źródłaGavina, A., J. Matos i P. B. Vasconcelos. "Tau Method for Linear Quadratic Regulator Problems". Journal of Applied Nonlinear Dynamics 3, nr 2 (czerwiec 2014): 139–46. http://dx.doi.org/10.5890/jand.2014.06.004.
Pełny tekst źródłaRozprawy doktorskie na temat "Linear Quadratic Regulator"
Mouadeb, Abdu-Nasser R. "Extension of linear quadratic regulator theory and its applications". Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7535.
Pełny tekst źródłaBenner, Peter, i Jens Saak. "Linear-Quadratic Regulator Design for Optimal Cooling of Steel Profiles". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601597.
Pełny tekst źródłaKhalid, Muhammad Salman. "Linear Quadratic Regulator and Receding Horizon Control for Constrained Systems". Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515489.
Pełny tekst źródłaAravinthan, Abhiramy. "Linear quadratic regulator design for doubly fed induction generator using singular perturbation techniques". Thesis, Wichita State University, 2012. http://hdl.handle.net/10057/5523.
Pełny tekst źródłaThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
Nelson, Karen E. (Karen Elizabeth) M. Eng Massachusetts Institute of Technology. "Active control of tensegrity structures and its applications using Linear Quadratic Regulator algorithms". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66845.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 61-62).
The concept of responsive architecture has inspired the idea structures which are adaptable and change in order to better fit the user. This idea can be extended to structural engineering with the implementing of structures which change to better take on their external loading. The following text explores the utilization of active control for tensegrity systems in order to achieve an adaptable structure. To start, a background of the physical characteristics of these structures is given along with the methods which are used to find their form. Next, the different methods which have been previously used to achieve active control in tensegrity are reviewed as well as the objectives they intended to achieve. From there, the Linear Quadratic Regulator (LQR) algorithm is introduced as a possible method to be used in designing active control. A planar tensegrity beam is described, whose form was found by the force density method. A simulation is then conducted, which applies the LQR algorithm to this structure for the purposes of active control. This simulation served both to demonstrate the force density and LQR methods, as well as to study how different control parameters and actuator placements effects the efficiency of the control. This text concludes with a discussion of the results of this simulation.
by Karen E. Nelson.
M.Eng.
Uddin, Md Mosleh. "Active Vibration Control of Helicopter Rotor Blade by Using a Linear Quadratic Regulator". ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2499.
Pełny tekst źródłaBushong, Philip Merton. "A multi-loop guidance scheme using singular perturbation and linear quadratic regulator techniques simultaneously". Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-135643/.
Pełny tekst źródłaVugrin, Eric D. "On Approximation and Optimal Control of Nonnormal Distributed Parameter Systems". Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11149.
Pełny tekst źródłaPh. D.
Bagheri, Shahriar. "Modeling, Simulation and Control System Design for Civil Unmanned Aerial Vehicle (UAV)". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-96458.
Pełny tekst źródłaAlvarez, Genesis Barbie. "Control Design for a Microgrid in Normal and Resiliency Modes of a Distribution System". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/94627.
Pełny tekst źródłaMaster of Science
Reliable power supply from the electric grid is an essential part of modern life. This critical infrastructure can be vulnerable to cascading failures or natural disasters. A solution to improve power systems resilience can be through microgrids. A microgrid is a small network of interconnected loads and distributed energy resources (DERs) such as microturbines, wind power, solar power, or traditional internal combustion engines. A microgrid can operate being connected or disconnected from the grid. This research emphases on the potentially use of a Microgrid as a resiliency source during grid restoration to pick up critical load. In this research, controllers are designed to pick up critical loads (i.e hospitals, street lights and military bases) from the distribution system in case the electric grid is unavailable. This case study includes the design of a Microgrid and it is being tested for its feasibility in an actual integration with the electric grid. Once the grid is restored the synchronization between the microgrid and electric must be conducted. Synchronization is a crucial task. An abnormal synchronization can cause a disturbance in the system, damage equipment, and overall lead to additional system outages. This thesis develops various controllers to conduct proper synchronization. Interconnecting inverter-based distributed energy resources (DERs) such as photovoltaic and battery storage within the distribution system can use the electronic devices to improve power quality. This research focuses on using these devices to improve the voltage profile within the distribution system and the frequency within the Microgrid.
Książki na temat "Linear Quadratic Regulator"
1964-, Hartley T. T., i Chicatelli S. P. 1964-, red. The hyperbolic map and applications to the linear quadratic regulator. New York: Springer-Verlag, 1989.
Znajdź pełny tekst źródłaDaiuto, Brian J., Tom T. Hartley i Stephen P. Chicatelli, red. The Hyperbolic Map and Applications to the Linear Quadratic Regulator. Berlin/Heidelberg: Springer-Verlag, 1989. http://dx.doi.org/10.1007/bfb0042968.
Pełny tekst źródłaDaiuto, Brian J. The Hyperbolic Map and Applications to the Linear Quadratic Regulator. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Znajdź pełny tekst źródłaRosen, I. G. Optimal discrete-time LQR problems for parabolic systems with unbounded input - approximation and convergence. Hampton, Va: ICASE, 1988.
Znajdź pełny tekst źródłaRosen, I. G. On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Znajdź pełny tekst źródłaJones, Mark T. A language comparison for scientific computing on MIMD architectures. Hampton, Va: ICASE, 1989.
Znajdź pełny tekst źródłaMarc, Buchner, i United States. National Aeronautics and Space Administration., red. A parametric LQ approach to multiobjective control system design. [Washington, DC]: NASA, 1988.
Znajdź pełny tekst źródłaGibson, J. S. Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem. Hampton, Va: ICASE, 1986.
Znajdź pełny tekst źródłaBanks, H. Thomas. A numerical algorithm for optimal feedback gains in high dimensional LQR problems. Hampton, Va: ICASE, 1986.
Znajdź pełny tekst źródłaGibson, J. S. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems. Hampton, Va: ICASE, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Linear Quadratic Regulator"
Björk, Tomas, Mariana Khapko i Agatha Murgoci. "The Linear Quadratic Regulator". W Springer Finance, 23–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81843-2_3.
Pełny tekst źródłaHajiyev, Chingiz, Halil Ersin Soken i Sıtkı Yenal Vural. "Linear Quadratic Regulator Controller Design". W State Estimation and Control for Low-cost Unmanned Aerial Vehicles, 171–200. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16417-5_10.
Pełny tekst źródłaMohammadi, Hesameddin, Mahdi Soltanolkotabi i Mihailo R. Jovanović. "Model-Free Linear Quadratic Regulator". W Handbook of Reinforcement Learning and Control, 173–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60990-0_6.
Pełny tekst źródłaBjörk, Tomas, Mariana Khapko i Agatha Murgoci. "The Inconsistent Linear Quadratic Regulator". W Springer Finance, 195–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81843-2_19.
Pełny tekst źródłaBjörk, Tomas, Mariana Khapko i Agatha Murgoci. "The Continuous-Time Linear Quadratic Regulator". W Springer Finance, 129–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81843-2_12.
Pełny tekst źródłaDelchamps, David F. "The Discrete-Time Linear Quadratic Regulator Problem". W State Space and Input-Output Linear Systems, 393–405. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-3816-4_27.
Pełny tekst źródłaDelchamps, David F. "The Continuous-Time Linear Quadratic Regulator Problem". W State Space and Input-Output Linear Systems, 406–15. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-3816-4_28.
Pełny tekst źródłaMunje, Ravindra, Balasaheb Patre i Akhilanand Tiwari. "State Feedback Control Using Linear Quadratic Regulator". W Energy Systems in Electrical Engineering, 61–77. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3014-7_4.
Pełny tekst źródłaLavretsky, Eugene, i Kevin A. Wise. "Optimal Control and the Linear Quadratic Regulator". W Robust and Adaptive Control, 27–50. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4396-3_2.
Pełny tekst źródłaRizvi, Syed Ali Asad, i Zongli Lin. "Model-Free Design of Linear Quadratic Regulator". W Output Feedback Reinforcement Learning Control for Linear Systems, 27–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15858-2_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Linear Quadratic Regulator"
Carlos, Hugo, Jean-Bernard Hayer i Rafael Murrieta-Cid. "Regression-Based Linear Quadratic Regulator". W 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018. http://dx.doi.org/10.1109/icra.2018.8460479.
Pełny tekst źródłaLi, Yan, i YangQuan Chen. "Fractional Order Linear Quadratic Regulator". W 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications (MESA). IEEE, 2008. http://dx.doi.org/10.1109/mesa.2008.4735696.
Pełny tekst źródłaLudeke, D. Taylor, i Tetsuya Iwasaki. "Linear Quadratic Regulator for Autonomous Oscillation". W 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8815208.
Pełny tekst źródłaHole, K. E. "Design of Robust Linear Quadratic Regulator". W 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790323.
Pełny tekst źródłaTzortzis, Ioannis, Charalambos D. Charalambous, Themistoklis Charalambous, Christos K. Kourtellaris i Christoforos N. Hadjicostis. "Robust Linear Quadratic Regulator for uncertain systems". W 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798481.
Pełny tekst źródłaJongeneel, Wouter, Tyler Summers i Peyman Mohajerin Esfahani. "Robust Linear Quadratic Regulator: Exact Tractable Reformulation". W 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9028884.
Pełny tekst źródłaNakajima, Kyohei, Koichi Kobayashi i Yuh Yamashita. "Linear quadratic regulator with decentralized event-triggering". W IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7793650.
Pełny tekst źródłaGromaszek, Konrad, Beata Kuśmierz i Krzysztof Kryk. "Inverted pendulum model Linear–Quadratic Regulator (LQR)". W Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, redaktorzy Ryszard S. Romaniuk i Maciej Linczuk. SPIE, 2018. http://dx.doi.org/10.1117/12.2501686.
Pełny tekst źródłaHeemels, W. P. M. H., S. J. L. van Eijndhoven i A. A. Stoorvogel. "Linear quadratic regulator problem with positive controls". W 1997 European Control Conference (ECC). IEEE, 1997. http://dx.doi.org/10.23919/ecc.1997.7082364.
Pełny tekst źródłaSchildbach, Georg, Paul Goulart i Manfred Morari. "The Linear Quadratic Regulator with chance constraints". W 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669660.
Pełny tekst źródła