Artykuły w czasopismach na temat „Linear block codes”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Linear block codes.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Linear block codes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Litwin, L., i K. Ramaswamy. "Linear block codes". IEEE Potentials 20, nr 1 (2001): 29–31. http://dx.doi.org/10.1109/45.913209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Feng, Keqin, Lanju Xu i Fred J. Hickernell. "Linear error-block codes". Finite Fields and Their Applications 12, nr 4 (listopad 2006): 638–52. http://dx.doi.org/10.1016/j.ffa.2005.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dubey, Pankaj, Neelesh Gupta i Meha Shrivastva. "Non Coherent Block Coded Modulation using Linear Components Codes". International Journal of Computer Applications 91, nr 13 (18.04.2014): 5–8. http://dx.doi.org/10.5120/15939-5097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tolhuizen, L. "New binary linear block codes (Corresp.)". IEEE Transactions on Information Theory 33, nr 5 (wrzesień 1987): 727–29. http://dx.doi.org/10.1109/tit.1987.1057346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Caire, G., i E. Biglieri. "Linear block codes over cyclic groups". IEEE Transactions on Information Theory 41, nr 5 (1995): 1246–56. http://dx.doi.org/10.1109/18.412673.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sklar, B., i F. J. Harris. "The ABCs of linear block codes". IEEE Signal Processing Magazine 21, nr 4 (lipiec 2004): 14–35. http://dx.doi.org/10.1109/msp.2004.1311137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tang, Li, i Aditya Ramamoorthy. "Coded Caching Schemes With Reduced Subpacketization From Linear Block Codes". IEEE Transactions on Information Theory 64, nr 4 (kwiecień 2018): 3099–120. http://dx.doi.org/10.1109/tit.2018.2800059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wei, Ruey-Yi, Tzu-Shiang Lin i Shi-Shan Gu. "Noncoherent Block-Coded TAPSK and 16QAM Using Linear Component Codes". IEEE Transactions on Communications 58, nr 9 (wrzesień 2010): 2493–98. http://dx.doi.org/10.1109/tcomm.2010.09.090413.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sole, Patrick, i Virgilio Sison. "Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings". IEEE Transactions on Information Theory 53, nr 6 (czerwiec 2007): 2267–70. http://dx.doi.org/10.1109/tit.2007.896884.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Micheli, Giacomo, i Alessandro Neri. "New Lower Bounds for Permutation Codes Using Linear Block Codes". IEEE Transactions on Information Theory 66, nr 7 (lipiec 2020): 4019–25. http://dx.doi.org/10.1109/tit.2019.2957354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Niharmine, Lahcen, Hicham Bouzkraoui, Ahmed Azouaoui i Youssef Hadi. "Simulated Annealing Decoder for Linear Block Codes". Journal of Computer Science 14, nr 8 (1.08.2018): 1174–89. http://dx.doi.org/10.3844/jcssp.2018.1174.1189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Agrell, E. "Voronoi regions for binary linear block codes". IEEE Transactions on Information Theory 42, nr 1 (1996): 310–16. http://dx.doi.org/10.1109/18.481810.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Said, A., i R. Palazzo. "New ternary and quaternary linear block codes". IEEE Transactions on Information Theory 42, nr 5 (1996): 1625–28. http://dx.doi.org/10.1109/18.532912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kiely, A. B., S. J. Dolinar, R. J. McEliece, L. L. Ekroot i Wei Lin. "Trellis decoding complexity of linear block codes". IEEE Transactions on Information Theory 42, nr 6 (1996): 1687–97. http://dx.doi.org/10.1109/18.556665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Laendner, Stefan, Thorsten Hehn, Olgica Milenkovic i Johannes B. Huber. "The Trapping Redundancy of Linear Block Codes". IEEE Transactions on Information Theory 55, nr 1 (styczeń 2009): 53–63. http://dx.doi.org/10.1109/tit.2008.2008134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Dumachev, V. N., A. N. Kopylov i V. V. Butov. "Neural Net Decoders for Linear Block Codes". Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software" 12, nr 1 (2019): 129–36. http://dx.doi.org/10.14529/mmp190111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

WU, JA-LING, YUEN-HSIEN TSENG i YUH-MING HUANG. "NEURAL NETWORK DECODERS FOR LINEAR BLOCK CODES". International Journal of Computational Engineering Science 03, nr 03 (wrzesień 2002): 235–55. http://dx.doi.org/10.1142/s1465876302000629.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Dong, Xue-dong, Cheong Boon Soh i Erry Gunawan. "Linear Block Codes for Four-Dimensional Signals". Finite Fields and Their Applications 5, nr 1 (styczeń 1999): 57–75. http://dx.doi.org/10.1006/ffta.1998.0235.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Khebbou, Driss, Reda Benkhouya, Idriss Chana i Hussain Ben-Azza. "SIMPLIFIED SUCCESSIVE-CANCELLATION LIST POLAR DECODING FOR BINARY LINEAR BLOCK CODES". Journal of Southwest Jiaotong University 56, nr 6 (24.12.2021): 616–26. http://dx.doi.org/10.35741/issn.0258-2724.56.6.54.

Pełny tekst źródła
Streszczenie:
This paper aims to take advantage of the performances of polar decoding techniques for the benefit of binary linear block codes (BLBCs) with the main objective is to study the performances of the SSCL decoding for short-length BLBCs. Polar codes are one of the most recent error-correcting codes to be invented, and they have been mathematically demonstrated to be able to correct all errors under a specific situation, using the successive-cancellation decoder. However, their performances for real-time wireless communications at short block lengths remain less attractive. To take advantage of the performance of these codes in favor of error correction codes of short block length, an adaptation of the simplified successive-cancellation list as a decoder for polar codes for the benefit of short block length binary linear block codes is presented in this paper. This adaptation makes it possible to take advantage of the performances of less complex decoding methods for polar codes for BLBCs with latency and complexity optimization of the standard successive-cancellation list decoder. The experiment shows that the method can achieve the performances of the most famous order statistic decoder for binary linear block codes, which can achieve the performances of maximum-likelihood decoding with computational complexity and memory constraints.
Style APA, Harvard, Vancouver, ISO itp.
20

Khebbou, Driss, Idriss Chana i Hussain Ben-Azza. "Single parity check node adapted to polar codes with dynamic frozen bit equivalent to binary linear block codes". Indonesian Journal of Electrical Engineering and Computer Science 29, nr 2 (1.02.2023): 816. http://dx.doi.org/10.11591/ijeecs.v29.i2.pp816-824.

Pełny tekst źródła
Streszczenie:
<span lang="EN-US">In the context of decoding binary linear block codes by polar code decoding techniques, we propose in this paper a new optimization of the serial nature of decoding the polar codes equivalent to binary linear block codes. In addition to the special nodes proposed by the simplified successive-cancellation list technique, we propose a new special node allowing to estimate in parallel the bits of its sub-code. The simulation is done in an additive white gaussian noise channel (AWGN) channel for several linear block codes, namely bose–chaudhuri–hocquenghem codes (BCH) codes, quadratic-residue (QR) codes, and linear block codes recently designed in the literature. The performance of the proposed technique offers the same performance in terms of frame error rate (FER) as the ordered statistics decoding (OSD) algorithm, which achieves that of maximum likelihood decoder (MLD), but with high memory requirements and computational complexity.</span>
Style APA, Harvard, Vancouver, ISO itp.
21

Yang, Kai, Xiaodong Wang i Jon Feldman. "A New Linear Programming Approach to Decoding Linear Block Codes". IEEE Transactions on Information Theory 54, nr 3 (marzec 2008): 1061–72. http://dx.doi.org/10.1109/tit.2007.915712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Brown, Gavin, i Alexander M. Kasprzyk. "Seven new champion linear codes". LMS Journal of Computation and Mathematics 16 (2013): 109–17. http://dx.doi.org/10.1112/s1461157013000041.

Pełny tekst źródła
Streszczenie:
AbstractWe exhibit seven linear codes exceeding the current best known minimum distance $d$ for their dimension $k$ and block length $n$. Each code is defined over ${ \mathbb{F} }_{8} $, and their invariants $[n, k, d] $ are given by $[49, 13, 27] $, $[49, 14, 26] $, $[49, 16, 24] $, $[49, 17, 23] $, $[49, 19, 21] $, $[49, 25, 16] $ and $[49, 26, 15] $. Our method includes an exhaustive search of all monomial evaluation codes generated by points in the $[0, 5] \times [0, 5] $ lattice square.
Style APA, Harvard, Vancouver, ISO itp.
23

Berger, Y., i Y. Be'ery. "Soft trellis-based decoder for linear block codes". IEEE Transactions on Information Theory 40, nr 3 (maj 1994): 764–73. http://dx.doi.org/10.1109/18.335888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kiely, A. B., J. T. Coffey i M. R. Bell. "Optimal information bit decoding of linear block codes". IEEE Transactions on Information Theory 41, nr 1 (1995): 130–40. http://dx.doi.org/10.1109/18.370113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

McEliece, R. J. "On the BCJR trellis for linear block codes". IEEE Transactions on Information Theory 42, nr 4 (lipiec 1996): 1072–92. http://dx.doi.org/10.1109/18.508834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Fossorier, M. P. C., Shu Lin i J. Snyders. "Reliability-based syndrome decoding of linear block codes". IEEE Transactions on Information Theory 44, nr 1 (1998): 388–98. http://dx.doi.org/10.1109/18.651070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dariti, Rabiî, i El Mamoun Souidi. "New families of perfect linear error-block codes". International Journal of Information and Coding Theory 2, nr 2/3 (2013): 84. http://dx.doi.org/10.1504/ijicot.2013.059702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Honary, B. "Low-complexity trellis decoding of linear block codes". IEE Proceedings - Communications 142, nr 4 (1995): 201. http://dx.doi.org/10.1049/ip-com:19952037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Manoukian, H. H., i B. Honary. "BCJR trellis construction for binary linear block codes". IEE Proceedings - Communications 144, nr 6 (1997): 367. http://dx.doi.org/10.1049/ip-com:19971611.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Sweeney, P., i S. Wesemeyer. "Iterative soft-decision decoding of linear block codes". IEE Proceedings - Communications 147, nr 3 (2000): 133. http://dx.doi.org/10.1049/ip-com:20000300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Rocha Junior, V. C., i P. G. Farrell. "Algebraic Soft-Decision Techniques for Linear Block Codes". Journal of Communication and Information Systems 5, nr 1 (30.06.1990): 59–72. http://dx.doi.org/10.14209/jcis.1990.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Esmaeili, M., A. Alampour i T. A. Gulliver. "Decoding Binary Linear Block Codes Using Local Search". IEEE Transactions on Communications 61, nr 6 (czerwiec 2013): 2138–45. http://dx.doi.org/10.1109/tcomm.2013.041113.120057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ling, San, i Ferruh Özbudak. "Constructions and bounds on linear error-block codes". Designs, Codes and Cryptography 45, nr 3 (1.09.2007): 297–316. http://dx.doi.org/10.1007/s10623-007-9119-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Song, Young Joon. "Hybrid Maximum Likelihood Decoding for Linear Block Codes". International Journal of Multimedia and Ubiquitous Engineering 9, nr 10 (31.10.2014): 91–100. http://dx.doi.org/10.14257/ijmue.2014.9.10.09.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Altay, Gökmen, i Osman N. Ucan. "Heuristic construction of high-rate linear block codes". AEU - International Journal of Electronics and Communications 60, nr 9 (październik 2006): 663–66. http://dx.doi.org/10.1016/j.aeue.2005.12.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Wolf, J. K., i A. J. Viterbi. "On the weight distribution of linear block codes formed from convolutional codes". IEEE Transactions on Communications 44, nr 9 (1996): 1049–51. http://dx.doi.org/10.1109/26.536907.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lin, Chien-Ying, Yu-Chih Huang, Shin-Lin Shieh i Po-Ning Chen. "Transformation of Binary Linear Block Codes to Polar Codes With Dynamic Frozen". IEEE Open Journal of the Communications Society 1 (2020): 333–41. http://dx.doi.org/10.1109/ojcoms.2020.2979529.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Scholl, S., E. Leonardi i N. Wehn. "FPGA implementation of trellis decoders for linear block codes". Advances in Radio Science 12 (10.11.2014): 61–67. http://dx.doi.org/10.5194/ars-12-61-2014.

Pełny tekst źródła
Streszczenie:
Abstract. Forward error correction based on trellises has been widely adopted for convolutional codes. Because of their efficiency, they have also gained a lot of interest from a theoretic and algorithm point of view for the decoding of block codes. In this paper we present for the first time hardware architectures and implementations for trellis decoding of block codes. A key feature is the use of a sophisticated permutation network, the Banyan network, to implement the time varying structure of the trellis. We have implemented the Viterbi and the max-log-MAP algorithm in different folded versions on a Xilinx Virtex 6 FPGA.
Style APA, Harvard, Vancouver, ISO itp.
39

Aghaei, Amirhossein, Konstantinos Plataniotis i Subbarayan Pasupathy. "Widely linear MMSE receivers for linear dispersion space-time block-codes". IEEE Transactions on Wireless Communications 9, nr 1 (styczeń 2010): 8–13. http://dx.doi.org/10.1109/twc.2010.01.080897.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Башкиров, А. В., И. В. Свиридова, М. В. Хорошайлова i О. В. Свиридова. "STOCHASTIC DECODING OF LINEAR BLOCK CODES USING CHECK MATRIX". ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, nr 6 (10.01.2021): 79–84. http://dx.doi.org/10.36622/vstu.2020.16.6.011.

Pełny tekst źródła
Streszczenie:
Для итеративного декодирования на графах используется новый альтернативный подход - это стохастическое декодирование. Возможность стохастического декодирования была недавно предложена для декодирования LDPC-кодов. Эта статья расширяет применение стохастического подхода для декодирования линейных блочных кодов с помощью проверочных матриц (PCM), таких как коды Боуза - Чоудхури - Хоквингема (BCH), коды Рида - Соломона (RS) и блочные турбокоды на основе компонентов кодов BCH. Показано, как стохастический подход способен генерировать информацию мягкого выхода для итеративного декодирования с мягким входом и мягким выходом Soft - Input Soft - Output (SISO). Описывается структура стохастических переменных узлов высокой степени, используемых в кодах с помощью проверочных матриц PCM. Результаты моделирования для кода BCH (128, 120), кода RS (31, 25) и RS (63, 55) и турбокода блока BCH (256, 121) и (1024, 676) демонстрируют эффективность декодирования при закрытии к итеративному декодеру SISO с реализацией с плавающей запятой. Эти результаты показывают производительность декодирования, близкую к адаптивному алгоритму распространения доверия и/или турбо-ориентированному адаптированному алгоритму распространения доверия Stochastic decoding capability has recently been proposed for decoding LDPC codes. This paper expands on the application of the stochastic approach to decoding linear block codes using parity check matrices (PCMs) such as Bose-Chowdhury-Hawkingham (BCH) codes, Reed-Solomon (RS) codes, and BCH component-based block turbo codes. We show how the stochastic approach is able to generate soft-output information for iterative decoding with soft-input and soft-output Soft-Input Soft-Output (SISO). We describe the structure of high degree stochastic node variables used in codes using PCM parity check matrices. Simulation results for BCH code (128, 120), RS code (31, 25) and RS (63, 55), and BCH block turbo code (256, 121) and (1024, 676) demonstrate the decoding efficiency on close to SISO iterative decoder with floating point implementation. These results show decoding performance close to the adaptive trust propagation algorithm and / or turbo-oriented adapted trust propagation algorithm
Style APA, Harvard, Vancouver, ISO itp.
41

Anu Kathuria. "On traceable results of linear error correcting codes and resolvable BIBDS". International Journal of Science and Research Archive 2, nr 2 (30.05.2021): 274–79. http://dx.doi.org/10.30574/ijsra.2021.2.2.0408.

Pełny tekst źródła
Streszczenie:
In this paper we relate how Equidistant Constant Weight Codes and Different Combinatorial Structures like Resolvable Balanced Incomplete Block Designs (RBIBD) , Nested Balanced Incomplete Block Designs (NBIBD) and Linear Codes are related with each other and then show how these Combinatorial Structures can be used as 2-Traceable (TA) Code.
Style APA, Harvard, Vancouver, ISO itp.
42

Dong, Xue Dong. "Linear Block Codes for Six-Dimensional Signals over Finite Fields". Applied Mechanics and Materials 385-386 (sierpień 2013): 1358–61. http://dx.doi.org/10.4028/www.scientific.net/amm.385-386.1358.

Pełny tekst źródła
Streszczenie:
t is known that the performance of a signal constellation used to transmit digital information over the additive white Gaussian noise channel can be improved by increasing the dimensionality of the signal set used for transmission. This paper derives an algorithm for constructing codes for six-dimensional signals over finite fields of the algebraic integer ring of the cyclotomic field modulo irreducible elements with the norm , where is a prime number and or .These linear codes can correct some types of errors and provide an algebraic approach in an area which is currently mainly dominated by nonalgebraic convolutional codes.
Style APA, Harvard, Vancouver, ISO itp.
43

Lucas, R., M. Bossert i M. Breitbach. "On iterative soft-decision decoding of linear binary block codes and product codes". IEEE Journal on Selected Areas in Communications 16, nr 2 (1998): 276–96. http://dx.doi.org/10.1109/49.661116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ogasahara, Naonori, Manabu Kobayashi i Shigeichi Hirasawa. "The construction of periodically time-variant convolutional codes using binary linear block codes". Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 90, nr 9 (2007): 31–40. http://dx.doi.org/10.1002/ecjc.20271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

MUNTEANU, V., D. TARNICERIU i G. ZAHARIA. "Analysis of Linear Block Codes as Sources with Memory". Advances in Electrical and Computer Engineering 10, nr 4 (2010): 77–80. http://dx.doi.org/10.4316/aece.2010.04012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Elengical, S. M., F. Takawira i H. Xu. "Reduced complexity maximum likelihood decoding of linear block codes". SAIEE Africa Research Journal 97, nr 2 (czerwiec 2006): 136–39. http://dx.doi.org/10.23919/saiee.2006.9488001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Khmelkov, A. N. "Optimal Syndrome Decoding of Cyclic Linear Block-Structured Codes". Telecommunications and Radio Engineering 69, nr 2 (2010): 169–79. http://dx.doi.org/10.1615/telecomradeng.v69.i2.80.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Drolet, G. "Improvement of iterative decoding algorithm for linear block codes". Electronics Letters 38, nr 23 (2002): 1454. http://dx.doi.org/10.1049/el:20020981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Berger, Y., i Y. Be'ery. "Bounds on the trellis size of linear block codes". IEEE Transactions on Information Theory 39, nr 1 (1993): 203–9. http://dx.doi.org/10.1109/18.179359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kasami, T., T. Takata, T. Fujiwara i S. Lin. "On complexity of trellis structure of linear block codes". IEEE Transactions on Information Theory 39, nr 3 (maj 1993): 1057–64. http://dx.doi.org/10.1109/18.256515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii