Gotowa bibliografia na temat „Linear and non-linear problems”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Linear and non-linear problems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Linear and non-linear problems"

1

Mira, Pablo, i Manuel Pastor. "Non linear problems: Introduction". Revue Française de Génie Civil 6, nr 6 (styczeń 2002): 1019–36. http://dx.doi.org/10.1080/12795119.2002.9692729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Baradokas, Petras, Edvard Michnevic i Leonidas Syrus. "LINEAR AND NON‐LINEAR PROBLEMS OF PLATE DYNAMICS". Aviation 11, nr 4 (31.12.2007): 9–13. http://dx.doi.org/10.3846/16487788.2007.9635971.

Pełny tekst źródła
Streszczenie:
This paper presents a comparative analysis of linear and non‐linear problems of plate dynamics. By expressing the internal friction coefficient of the material by power polynomial γ= γ0 + γ1ϵ0 + γ2ϵ0 2+…, we assume γ= γ0 = const for a linear problem. When at least two polynomial terms are taken, a non‐linear problem is obtained. The calculations of resonance amplitudes of a rectangular plate yielded 3 per cent error: a linear problem yields a higher resonance amplitude. Using the Ritz method and the theory of complex numbers made the calculations. Similar methods of calculation can be used in solving the dynamic problems of thin‐walled vehicle structures.
Style APA, Harvard, Vancouver, ISO itp.
3

Mira, Pablo, i Manuel Pastor. "Non linear problems: Advanced Techniques". Revue Française de Génie Civil 6, nr 6 (styczeń 2002): 1069–81. http://dx.doi.org/10.1080/12795119.2002.9692732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Barberou, Nicolas, Marc Garbey, Matthias Hess, Michael M. Resch, Tuomo Rossi, Jari Toivanen i Damien Tromeur-Dervout. "Efficient metacomputing of elliptic linear and non-linear problems". Journal of Parallel and Distributed Computing 63, nr 5 (maj 2003): 564–77. http://dx.doi.org/10.1016/s0743-7315(03)00003-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ahmad, Jamshad, i Mariyam Mushtaq. "Exact Solution of Linear and Non-linear Goursat Problems". Universal Journal of Computational Mathematics 3, nr 1 (luty 2015): 14–17. http://dx.doi.org/10.13189/ujcmj.2015.030103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Matvienko, Yu G., i E. M. Morozov. "Some problems in linear and non-linear fracture mechanics". Engineering Fracture Mechanics 28, nr 2 (styczeń 1987): 127–38. http://dx.doi.org/10.1016/0013-7944(87)90208-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Beals, R., i R. R. Coifman. "Linear spectral problems, non-linear equations and the δ-method". Inverse Problems 5, nr 2 (1.04.1989): 87–130. http://dx.doi.org/10.1088/0266-5611/5/2/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Godin, Paul. "Subelliptic Non Linear Oblique Derivative Problems". American Journal of Mathematics 107, nr 3 (czerwiec 1985): 591. http://dx.doi.org/10.2307/2374371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shestopalov, Youri V. "NON-LINEAR EIGENVALUE PROBLEMS IN ELECTRODYNAMICS". Electromagnetics 13, nr 2 (styczeń 1993): 133–43. http://dx.doi.org/10.1080/02726349308908338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gill, Peter N. G. "Non‐linear proportionality in science problems". International Journal of Mathematical Education in Science and Technology 24, nr 3 (maj 1993): 365–71. http://dx.doi.org/10.1080/0020739930240305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Linear and non-linear problems"

1

Minne, Andreas. "Non-linear Free Boundary Problems". Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178110.

Pełny tekst źródła
Streszczenie:
This thesis consists of an introduction and four research papers related to free boundary problems and systems of fully non-linear elliptic equations. Paper A and Paper B prove optimal regularity of solutions to general elliptic and parabolic free boundary problems, where the operators are fully non-linear and convex. Furthermore, it is proven that the free boundary is continuously differentiable around so called "thick" points, and that the free boundary touches the fixed boundary tangentially in two dimensions. Paper C analyzes singular points of solutions to perturbations of the unstable obstacle problem, in three dimensions. Blow-up limits are characterized and shown to be unique. The free boundary is proven to lie close to the zero-level set of the corresponding blow-up limit. Finally, the structure of the singular set is analyzed. Paper D discusses an idea on how existence and uniqueness theorems concerning quasi-monotone fully non-linear elliptic systems can be extended to systems that are not quasi-monotone.

QC 20151210

Style APA, Harvard, Vancouver, ISO itp.
2

Wokiyi, Dennis. "Non-linear inverse geothermal problems". Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143031.

Pełny tekst źródła
Streszczenie:
The inverse geothermal problem consist of estimating the temperature distribution below the earth’s surface using temperature and heat-flux measurements on the earth’s surface. The problem is important since temperature governs a variety of the geological processes including formation of magmas, minerals, fosil fuels and also deformation of rocks. Mathematical this problem is formulated as a Cauchy problem for an non-linear elliptic equation and since the thermal properties of the rocks depend strongly on the temperature, the problem is non-linear. This problem is ill-posed in the sense that it does not satisfy atleast one of Hadamard’s definition of well-posedness. We formulated the problem as an ill-posed non-linear operator equation which is defined in terms of solving a well-posed boundary problem. We demonstrate existence of a unique solution to this well-posed problem and give stability estimates in appropriate function spaces. We show that the operator equation is well-defined in appropriate function spaces. Since the problem is ill-posed, regularization is needed to stabilize computations. We demostrate that Tikhonov regularization can be implemented efficiently for solving the operator equation. The algorithm is based on having a code for solving a well- posed problem related to the operator equation. In this study we demostrate that the algorithm works efficiently for 2D calculations but can also be modified to work for 3D calculations.
Style APA, Harvard, Vancouver, ISO itp.
3

Edlund, Ove. "Solution of linear programming and non-linear regression problems using linear M-estimation methods /". Luleå, 1999. http://epubl.luth.se/1402-1544/1999/17/index.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Toutip, Wattana. "The dual reciprocity boundary element method for linear and non-linear problems". Thesis, University of Hertfordshire, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369302.

Pełny tekst źródła
Streszczenie:
A problem encountered in the boundary element method is the difficulty caused by corners and/or discontinuous boundary conditions. An existing code using standard linear continuous elements is modified to overcome such problems using the multiple node method with an auxiliary boundary collocation approach. Another code is implemented applying the gradient approach as an alternative to handle such problems. Laplace problems posed on variety of domain shapes have been introduced to test the programs. For Poisson problems the programs have been developed using a transformation to a Laplace problem. This method cannot be applied to solve Poissontype equations. The dual reciprocity boundary element method (DRM) which is a generalised way to avoid domain integrals is introduced to solve such equations. The gradient approach to handle corner problems is co-opted in the program using DRM. The program is modified to solve non-linear problems using an iterative method. Newton's method is applied in the program to enhance the accuracy of the results and reduce the number of iterations. The program is further developed to solve coupled Poisson-type equations and such a formulation is considered for the biharmonic problems. A coupled pair of non-linear equations describing the ohmic heating problem is also investigated. Where appropriate results are compared with those from reference solutions or exact solutions. v
Style APA, Harvard, Vancouver, ISO itp.
5

McKay, Barry. "Wrinkling problems for non-linear elastic membranes". Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Baek, Kwang-Hyun. "Non-linear optimisation problems in active control". Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243131.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Garcia, Francisco Javier. "THREE NON-LINEAR PROBLEMS ON NORMED SPACES". Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1171042141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sorour, Ahmed El-Sayed. "Some problems in non-linear open loop systems". Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shikongo, Albert. "Numerical Treatment of Non-Linear singular pertubation problems". Thesis, Online access, 2007. http://etd.uwc.ac.za/usrfiles/modules/etd/docs/etd_gen8Srv25Nme4_3831_1257936459.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ruggeri, Felipe. "A higher order time domain panel method for linear and weakly non linear seakeeping problems". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-09122016-074844/.

Pełny tekst źródła
Streszczenie:
This thesis addresses the development of a weakly non-linear Higher Order Time Domain Rankine Panel Method (TDRPM) for the linear and weakly non-linear seakeeping analysis of floating offshore structures, including wave-current interaction effects. A higher order boundary elements method is adopted based on the body geometry description using Non-uniform Rational B-splines (NURBS) formulation, which can be generated by many standard Computed Aided Design (CAD) softwares widely available, and the several computed quantities (velocity potential, free surface elevation and others) are described using a B-spline formulation of arbitrary degree. The problem is formulated considering wave-current-body interactions up to second order effects, these ones considering the terms obtained by interaction of zero/first order quantities. In order to provide numerical stability, the Initial Boundary Value Problem (IBVP) is formulated in terms of the velocity potential and the local acceleration potential, the later used to predict the hydrodynamic pressure accurately. The zeroth order problem is solved using the double-body linearization instead of the Neumman-Kelvin one in order to allow bluff bodies simulation, leading to very complex expressions regarding the m-terms computation. The method adopts the Rankine sources as Green\'s function, which are integrated using Gauss quadrature in the entire domain, but for the self-influence terms that are integrated using a desingularized procedure. The numerical method is verified initially considering simplified geometries (sphere and circular cylinder) for both, first and second-order computations, with and without current effects. The derivatives of the velocity potential are verified by comparing the numerical m-terms to the analytical solutions for a hemisphere under uniform flow. The mean and double frequency drift forces are computed for fixed and floating structures and the quantities involved in these computations (wave runup, velocity field) are also compared to literature results, including the free floating response of a sphere under current effects. Two practical cases are also studied, namely the wave-induced second order responses of a semi-submersible platform and the wavedrift-damping effect evaluated through the equilibrium angle of a turret moored FPSO. For the former, some specific model tests were designed and conducted in a wave-basin.
Essa tese aborda o desenvolvimento de um método de Rankine de ordem alta no domínio do tempo (TDRPM) para o estudo de problemas lineares e fracamente não lineares, incluindo o efeito de corrente, envolvendo sistemas flutuantes. O método de ordem alta desenvolvido considera a geometria do corpo como descrita pelo padrão Non-uniform Rational Basis Spline (NURBS), que está disponível em diverso0s softwares de Computed Aided Design (CAD) disponíveis, sendo as diversas funções (potencial de velocidades, elevação da superfície-livre e outros) descritos usando B-splines de grau arbitrário. O problema é formulado considerando interações onda-corrente-estrutura para efeitos de até segunda ordem, os de ordem superior sendo calculados considerando as interações somente dos termos de ordem inferior. Para garantir a estabilidade numérica, o problema de contorno com valor inicial é formulado0 com relação ao potencial de velocidade e de parcela local do potencial de acelerações, este para garantir cálculos precisos da pressão dinâmica. O problema de ordem zero é resolvido usando a linearização de corpo-duplo ao invés da linearização de Neumman-Kelvin para permitir a análise de corpos rombudos, o que requer o cálculo de termos-m de grande complexidade. O método adota fontes de Rankine como funções de Green, que são integradas através de quadratura de Gauss-Legendre no domínio todo, exceto com relação aos termos de auto-influência que adotasm um procedimento de dessingularização. O método numérico é inicialmente verificado considerando corpos de geometria simplificada (esfera e cilindro), considerando efeitos de primeira e segunda ordens, com e sem corrente. As derivadas do potencial de velocidade são verificadas comparando os termos-m obtidos numericamente com soluções analíticas disponíveis para a esfera em fluído infinito. As forças de deriva média e dupla-frequência são calculadas para estruturas fixas e flutuantes, sendo as funções calculadas (elevação da superfície, campo de velocidade) comparadas com resultados disponíveis na literatura, incluindo o movimento da esfera flutuante sob a ação de corrente e ondas. São também estudados dois casos de aplicação prática, a resposta de segunda ordem de uma plataforma semi-submersível e o efeito de wave-drift damping para o ângulo de equilíbrio de uma plataforma FPSO ancorada através de sistema turred. No caso da semi-submersível, os ensaios foram projetados e realizados em tanque de provas.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Linear and non-linear problems"

1

Prodi, G., red. Eigenvalues of Non-Linear Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10940-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Prodi, G., red. Problems in Non-Linear Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10998-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

service), SpringerLink (Online, red. Eigenvalues of Non-Linear Problems. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

service), SpringerLink (Online, red. Problems in Non-Linear Analysis. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ogden, R. W. Non-linear elastic deformations. Mineola, N.Y: Dover Publications, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rautian, Sergeĭ Glebovich. Kinetic problems of non-linear spectroscopy. Amsterdam, Netherlands: North-Holland, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

J, Owen D. R., Taylor C i Hinton E, red. Computational methods for non-linear problems. Swansea: Pineridge Press, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Blake, A. P. Approximate linear solutions for non-linear R.E. models: A technique and some problems. London: University of London. Queen Mary College. Department of Economics, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bogdanovich, Alexander. Non-linear dynamic problems for composite cylindrical shells. London: Elsevier Applied Science, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Linear discrete parabolic problems. Boston: Elsevier, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Linear and non-linear problems"

1

Larson, Mats G., i Fredrik Bengzon. "Non-linear Problems". W Texts in Computational Science and Engineering, 225–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Poler, Raúl, Josefa Mula i Manuel Díaz-Madroñero. "Non-Linear Programming". W Operations Research Problems, 87–113. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5577-5_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jiji, Latif M. "NON-LINEAR CONDUCTION PROBLEMS". W Heat Conduction, 215–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01267-9_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Akbarov, S. D., i A. N. Guz. "Geometrically Non-Linear Problems". W Mechanics of Curved Composites, 335–53. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9504-4_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Fursaev, Dmitri, i Dmitri Vassilevich. "Non-linear Spectral Problems". W Theoretical and Mathematical Physics, 115–24. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0205-9_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gupta, Neha, i Irfan Ali. "Non-Linear Optimization Problems". W Optimization with LINGO-18 Problems and Applications, 115–40. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003048893-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jiji, Latif M., i Amir H. Danesh-Yazdi. "Non-linear Conduction Problems". W Heat Conduction, 225–48. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-43740-3_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shah, Nita H., i Poonam Prakash Mishra. "One-Dimensional Optimization Problem". W Non-Linear Programming, 1–14. First edition. | Boca Raton, FL: CRC Press, an imprint of Taylor & Francis Group, LLC, 2021. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.4324/9781003105213-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shah, Nita H., i Poonam Prakash Mishra. "One-Dimensional Optimization Problem". W Non-Linear Programming, 1–14. First edition. | Boca Raton, FL: CRC Press, an imprint of Taylor & Francis Group, LLC, 2021. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781003105213-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Surana, Karan S., i J. N. Reddy. "Non-Linear Differential Operators". W The Finite Element Method for Boundary Value Problems, 419–92. Boca Raton : CRC Press, 2017.: CRC Press, 2016. http://dx.doi.org/10.1201/9781315365718-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Linear and non-linear problems"

1

Chang, R. J. "Optimal Linear Feedback Control for Non-Linear-Non-Quadratic-Non-Gaussian Problems". W 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4790782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

LASSAS, MATTI. "INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS". W International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Muller, Orna, i Bruria Haberman. "A non-linear approach to solving linear algorithmic problems". W 2010 IEEE Frontiers in Education Conference (FIE). IEEE, 2010. http://dx.doi.org/10.1109/fie.2010.5673643.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cooper, G. R. J. "Optimising Overdetermined Non-linear Inverse Problems". W 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20130121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mosquera, Alejandro, i Santiago Hernández. "Linear and Non Linear Analytical Sensitivity Analysis of Eigenvalue Problems". W 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Balitskiy, Gleb, Alexey Frolov i Pavel Rybin. "Linear Programming Decoding of Non-Linear Sparse-Graph Codes". W 2021 XVII International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY). IEEE, 2021. http://dx.doi.org/10.1109/redundancy52534.2021.9606454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gupta, Arya Tanmay, i Sandeep S. Kulkarni. "Inducing Lattices in Non-Lattice-Linear Problems". W 2023 42nd International Symposium on Reliable Distributed Systems (SRDS). IEEE, 2023. http://dx.doi.org/10.1109/srds60354.2023.00031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Park, Dae-Geun, Jin-Hak Jang, Sung-An Kim i Yun-Hyun Cho. "Modeling of Non-Linear Analysis of Dynamic Characteristics of Linear Compressor". W 2012 Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF). IEEE, 2012. http://dx.doi.org/10.1109/icef.2012.6310292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Anderson Kuzma, Heidi L. "The “kernel trick”: Using linear algorithms to solve non‐linear geophysical problems". W SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ansari, Mohd Samar, i Syed Atiqur Rahman. "A DVCC-based non-linear analog circuit for solving linear programming problems". W 2010 International Conference on Power, Control and Embedded Systems (ICPCES). IEEE, 2010. http://dx.doi.org/10.1109/icpces.2010.5698617.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Linear and non-linear problems"

1

Li, Zhilin, i Kazufumi Ito. Theoretical and Numerical Analysis for Non-Linear Interface Problems. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2007. http://dx.doi.org/10.21236/ada474058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hou, Elizabeth Mary, i Earl Christopher Lawrence. Variational Methods for Posterior Estimation of Non-linear Inverse Problems. Office of Scientific and Technical Information (OSTI), wrzesień 2018. http://dx.doi.org/10.2172/1475317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Benigno, Pierpaolo, i Michael Woodford. Linear-Quadratic Approximation of Optimal Policy Problems. Cambridge, MA: National Bureau of Economic Research, listopad 2006. http://dx.doi.org/10.3386/w12672.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Mangasarian, O. L., i T. H. Shiau. Error Bounds for Monotone Linear Complementarity Problems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1985. http://dx.doi.org/10.21236/ada160975.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shiau, Tzong H. Iterative Methods for Linear Complementary and Related Problems. Fort Belvoir, VA: Defense Technical Information Center, maj 1989. http://dx.doi.org/10.21236/ada212848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Brigola, R., i A. Keller. On Functional Estimates for Ill-Posed Linear Problems. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1988. http://dx.doi.org/10.21236/ada198004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rundell, William, i Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1992. http://dx.doi.org/10.21236/ada256012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hendon, Raymond C., i Scott D. Ramsey. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles. Office of Scientific and Technical Information (OSTI), sierpień 2012. http://dx.doi.org/10.2172/1049354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pilant, Michael S., i William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1989. http://dx.doi.org/10.21236/ada218462.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

ZOTOVA, V. A., E. G. SKACHKOVA i T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, kwiecień 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.

Pełny tekst źródła
Streszczenie:
The article describes the methodological features of the analytical solution of the problem of non-stationary one-dimensional linear thermal conductivity of the rod. The authors propose to obtain a solution to such problems by the method of finite differences using the Fourier similarity criterion. This approach is especially attractive because the similarity theory in the vast majority of cases makes it possible to do without expensive experiments and obtain simple solutions for a wide range of problems.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii