Artykuły w czasopismach na temat „Limited training data”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Limited training data”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Oh, Se Eun, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright i Nicholas Hopper. "GANDaLF: GAN for Data-Limited Fingerprinting". Proceedings on Privacy Enhancing Technologies 2021, nr 2 (29.01.2021): 305–22. http://dx.doi.org/10.2478/popets-2021-0029.
Pełny tekst źródłaMcLaughlin, Niall, Ji Ming i Danny Crookes. "Robust Multimodal Person Identification With Limited Training Data". IEEE Transactions on Human-Machine Systems 43, nr 2 (marzec 2013): 214–24. http://dx.doi.org/10.1109/tsmcc.2012.2227959.
Pełny tekst źródłaZhang, Mingyang, Berrak Sisman, Li Zhao i Haizhou Li. "DeepConversion: Voice conversion with limited parallel training data". Speech Communication 122 (wrzesień 2020): 31–43. http://dx.doi.org/10.1016/j.specom.2020.05.004.
Pełny tekst źródłaQian, Tieyun, Bing Liu, Li Chen, Zhiyong Peng, Ming Zhong, Guoliang He, Xuhui Li i Gang Xu. "Tri-Training for authorship attribution with limited training data: a comprehensive study". Neurocomputing 171 (styczeń 2016): 798–806. http://dx.doi.org/10.1016/j.neucom.2015.07.064.
Pełny tekst źródłaSaunders, Sara L., Ethan Leng, Benjamin Spilseth, Neil Wasserman, Gregory J. Metzger i Patrick J. Bolan. "Training Convolutional Networks for Prostate Segmentation With Limited Data". IEEE Access 9 (2021): 109214–23. http://dx.doi.org/10.1109/access.2021.3100585.
Pełny tekst źródłaZhao, Yao, Dong Joo Rhee, Carlos Cardenas, Laurence E. Court i Jinzhong Yang. "Training deep‐learning segmentation models from severely limited data". Medical Physics 48, nr 4 (19.02.2021): 1697–706. http://dx.doi.org/10.1002/mp.14728.
Pełny tekst źródłaHoffbeck, J. P., i D. A. Landgrebe. "Covariance matrix estimation and classification with limited training data". IEEE Transactions on Pattern Analysis and Machine Intelligence 18, nr 7 (lipiec 1996): 763–67. http://dx.doi.org/10.1109/34.506799.
Pełny tekst źródłaCui, Kaiwen, Jiaxing Huang, Zhipeng Luo, Gongjie Zhang, Fangneng Zhan i Shijian Lu. "GenCo: Generative Co-training for Generative Adversarial Networks with Limited Data". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 1 (28.06.2022): 499–507. http://dx.doi.org/10.1609/aaai.v36i1.19928.
Pełny tekst źródłaKim, June-Woo, i Ho-Young Jung. "End-to-end speech recognition models using limited training data*". Phonetics and Speech Sciences 12, nr 4 (grudzień 2020): 63–71. http://dx.doi.org/10.13064/ksss.2020.12.4.063.
Pełny tekst źródłaTambouratzis, George, i Marina Vassiliou. "Swarm Algorithms for NLP - The Case of Limited Training Data". Journal of Artificial Intelligence and Soft Computing Research 9, nr 3 (1.07.2019): 219–34. http://dx.doi.org/10.2478/jaiscr-2019-0005.
Pełny tekst źródłaLiu, Weijian, Zhaojian Zhang, Jun Liu, Zheran Shang i Yong-Liang Wang. "Detection of a rank-one signal with limited training data". Signal Processing 186 (wrzesień 2021): 108120. http://dx.doi.org/10.1016/j.sigpro.2021.108120.
Pełny tekst źródłaPark, Ji-Hoon, Seung-Mo Seo i Ji-Hee Yoo. "SAR ATR for Limited Training Data Using DS-AE Network". Sensors 21, nr 13 (1.07.2021): 4538. http://dx.doi.org/10.3390/s21134538.
Pełny tekst źródłaKim, June-Woo, i Ho-Young Jung. "End-to-end speech recognition models using limited training data*". Phonetics and Speech Sciences 12, nr 4 (grudzień 2020): 63–71. http://dx.doi.org/10.13064/ksss.2020.12.4.063.
Pełny tekst źródłaGhorbandoost, Mostafa, Abolghasem Sayadiyan, Mohsen Ahangar, Hamid Sheikhzadeh, Abdoreza Sabzi Shahrebabaki i Jamal Amini. "Voice conversion based on feature combination with limited training data". Speech Communication 67 (marzec 2015): 113–28. http://dx.doi.org/10.1016/j.specom.2014.12.004.
Pełny tekst źródłaYAMASHITA, Masaru. "Acoustic HMMs to Detect Abnormal Respiration with Limited Training Data". IEICE Transactions on Information and Systems E106.D, nr 3 (1.03.2023): 374–80. http://dx.doi.org/10.1587/transinf.2022edp7068.
Pełny tekst źródłaWang, Jingjing, Zheng Liu, Rong Xie i Lei Ran. "Radar HRRP Target Recognition Based on Dynamic Learning with Limited Training Data". Remote Sensing 13, nr 4 (18.02.2021): 750. http://dx.doi.org/10.3390/rs13040750.
Pełny tekst źródłaXu, Ning, Yibing Tang, Jingyi Bao, Aiming Jiang, Xiaofeng Liu i Zhen Yang. "Voice conversion based on Gaussian processes by coherent and asymmetric training with limited training data". Speech Communication 58 (marzec 2014): 124–38. http://dx.doi.org/10.1016/j.specom.2013.11.005.
Pełny tekst źródłaWang, S. L., A. W. C. Liew, W. H. Lau i S. H. Leung. "An Automatic Lipreading System for Spoken Digits With Limited Training Data". IEEE Transactions on Circuits and Systems for Video Technology 18, nr 12 (grudzień 2008): 1760–65. http://dx.doi.org/10.1109/tcsvt.2008.2004924.
Pełny tekst źródłaCreswell, Antonia, Alison Pouplin i Anil A. Bharath. "Denoising adversarial autoencoders: classifying skin lesions using limited labelled training data". IET Computer Vision 12, nr 8 (12.09.2018): 1105–11. http://dx.doi.org/10.1049/iet-cvi.2018.5243.
Pełny tekst źródłaAghamaleki, Javad Abbasi, i Vahid Ashkani Chenarlogh. "Multi-stream CNN for facial expression recognition in limited training data". Multimedia Tools and Applications 78, nr 16 (25.04.2019): 22861–82. http://dx.doi.org/10.1007/s11042-019-7530-7.
Pełny tekst źródłaCrowson, Merry, Ron Hagensieker i Björn Waske. "Mapping land cover change in northern Brazil with limited training data". International Journal of Applied Earth Observation and Geoinformation 78 (czerwiec 2019): 202–14. http://dx.doi.org/10.1016/j.jag.2018.10.004.
Pełny tekst źródłaJannati, Mohammad Javad, i Abolghasem Sayadiyan. "Part-Syllable Transformation-Based Voice Conversion with Very Limited Training Data". Circuits, Systems, and Signal Processing 37, nr 5 (30.08.2017): 1935–57. http://dx.doi.org/10.1007/s00034-017-0639-x.
Pełny tekst źródłaDemir, Begum, Francesca Bovolo i Lorenzo Bruzzone. "Classification of Time Series of Multispectral Images With Limited Training Data". IEEE Transactions on Image Processing 22, nr 8 (sierpień 2013): 3219–33. http://dx.doi.org/10.1109/tip.2013.2259838.
Pełny tekst źródłaLang, Yue, Qing Wang, Yang Yang, Chunping Hou, Yuan He i Jinchen Xu. "Person identification with limited training data using radar micro‐Doppler signatures". Microwave and Optical Technology Letters 62, nr 3 (listopad 2019): 1060–68. http://dx.doi.org/10.1002/mop.32125.
Pełny tekst źródłaKhezri, Shirin, Jafar Tanha, Ali Ahmadi i Arash Sharifi. "STDS: self-training data streams for mining limited labeled data in non-stationary environment". Applied Intelligence 50, nr 5 (21.01.2020): 1448–67. http://dx.doi.org/10.1007/s10489-019-01585-3.
Pełny tekst źródłaTang, Yehui, Shan You, Chang Xu, Jin Han, Chen Qian, Boxin Shi, Chao Xu i Changshui Zhang. "Reborn Filters: Pruning Convolutional Neural Networks with Limited Data". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 5972–80. http://dx.doi.org/10.1609/aaai.v34i04.6058.
Pełny tekst źródłaDuong, Huu-Thanh, Tram-Anh Nguyen-Thi i Vinh Truong Hoang. "Vietnamese Sentiment Analysis under Limited Training Data Based on Deep Neural Networks". Complexity 2022 (30.06.2022): 1–14. http://dx.doi.org/10.1155/2022/3188449.
Pełny tekst źródłaJackson, Q., i D. A. Landgrebe. "An adaptive classifier design for high-dimensional data analysis with a limited training data set". IEEE Transactions on Geoscience and Remote Sensing 39, nr 12 (2001): 2664–79. http://dx.doi.org/10.1109/36.975001.
Pełny tekst źródłaChen, Shangyu, Wenya Wang i Sinno Jialin Pan. "Deep Neural Network Quantization via Layer-Wise Optimization Using Limited Training Data". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 3329–36. http://dx.doi.org/10.1609/aaai.v33i01.33013329.
Pełny tekst źródłaMamyrbayev, O. Zh, M. Othman, A. T. Akhmediyarova, A. S. Kydyrbekova i N. O. Mekebayev. "VOICE VERIFICATION USING I-VECTORS AND NEURAL NETWORKS WITH LIMITED TRAINING DATA". BULLETIN 3, nr 379 (15.06.2019): 36–43. http://dx.doi.org/10.32014/2019.2518-1467.66.
Pełny tekst źródłaZiv, J. "An efficient universal prediction algorithm for unknown sources with limited training data". IEEE Transactions on Information Theory 48, nr 6 (czerwiec 2002): 1690–93. http://dx.doi.org/10.1109/tit.2002.1003847.
Pełny tekst źródłaOh, Yujin, Sangjoon Park i Jong Chul Ye. "Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets". IEEE Transactions on Medical Imaging 39, nr 8 (sierpień 2020): 2688–700. http://dx.doi.org/10.1109/tmi.2020.2993291.
Pełny tekst źródłaHou, Yuchao, Ting Xu, Hongping Hu, Peng Wang, Hongxin Xue i Yanping Bai. "MdpCaps-Csl for SAR Image Target Recognition With Limited Labeled Training Data". IEEE Access 8 (2020): 176217–31. http://dx.doi.org/10.1109/access.2020.3026469.
Pełny tekst źródłaGe, Zhiqiang, Zhihuan Song i Furong Gao. "Self-Training Statistical Quality Prediction of Batch Processes with Limited Quality Data". Industrial & Engineering Chemistry Research 52, nr 2 (28.12.2012): 979–84. http://dx.doi.org/10.1021/ie300616s.
Pełny tekst źródłaKaewtip, Kantapon, Abeer Alwan i Charles Taylor. "Robust Hidden Markov Models for limited training data for birdsong phrase classification". Journal of the Acoustical Society of America 141, nr 5 (maj 2017): 3725–26. http://dx.doi.org/10.1121/1.4988171.
Pełny tekst źródłaKrishnagopal, Sanjukta, Yiannis Aloimonos i Michelle Girvan. "Similarity Learning and Generalization with Limited Data: A Reservoir Computing Approach". Complexity 2018 (1.11.2018): 1–15. http://dx.doi.org/10.1155/2018/6953836.
Pełny tekst źródłaZiel, Florian. "Load Nowcasting: Predicting Actuals with Limited Data". Energies 13, nr 6 (20.03.2020): 1443. http://dx.doi.org/10.3390/en13061443.
Pełny tekst źródłaSenchenkov, Valentin, Damir Absalyamov i Dmitriy Avsyukevich. "Diagnostics of life support systems with limited statistical data on failures". E3S Web of Conferences 140 (2019): 05002. http://dx.doi.org/10.1051/e3sconf/201914005002.
Pełny tekst źródłaBardis, Michelle, Roozbeh Houshyar, Chanon Chantaduly, Alexander Ushinsky, Justin Glavis-Bloom, Madeleine Shaver, Daniel Chow, Edward Uchio i Peter Chang. "Deep Learning with Limited Data: Organ Segmentation Performance by U-Net". Electronics 9, nr 8 (26.07.2020): 1199. http://dx.doi.org/10.3390/electronics9081199.
Pełny tekst źródłaHe, Qiuchen, Shaobo Li, Chuanjiang Li, Junxing Zhang, Ansi Zhang i Peng Zhou. "A Hybrid Matching Network for Fault Diagnosis under Different Working Conditions with Limited Data". Computational Intelligence and Neuroscience 2022 (1.07.2022): 1–14. http://dx.doi.org/10.1155/2022/3024590.
Pełny tekst źródłaVidal, Joel, Guillem Vallicrosa, Robert Martí i Marc Barnada. "Brickognize: Applying Photo-Realistic Image Synthesis for Lego Bricks Recognition with Limited Data". Sensors 23, nr 4 (8.02.2023): 1898. http://dx.doi.org/10.3390/s23041898.
Pełny tekst źródłaPark, Sangyong, Jaeseon Kim i Yong Seok Heo. "Semantic Segmentation Using Pixel-Wise Adaptive Label Smoothing via Self-Knowledge Distillation for Limited Labeling Data". Sensors 22, nr 7 (29.03.2022): 2623. http://dx.doi.org/10.3390/s22072623.
Pełny tekst źródłaGimeno, Pablo, Victoria Mingote, Alfonso Ortega, Antonio Miguel i Eduardo Lleida. "Generalizing AUC Optimization to Multiclass Classification for Audio Segmentation With Limited Training Data". IEEE Signal Processing Letters 28 (2021): 1135–39. http://dx.doi.org/10.1109/lsp.2021.3084501.
Pełny tekst źródłaJafaryani, Mohamadreza, Hamid Sheikhzadeh i Vahid Pourahmadi. "Parallel voice conversion with limited training data using stochastic variational deep kernel learning". Engineering Applications of Artificial Intelligence 115 (październik 2022): 105279. http://dx.doi.org/10.1016/j.engappai.2022.105279.
Pełny tekst źródłaLi, Hai, Wenyu Song, Weijian Liu i Renbiao Wu. "Moving target detection with limited training data based on the subspace orthogonal projection". IET Radar, Sonar & Navigation 12, nr 7 (lipiec 2018): 679–84. http://dx.doi.org/10.1049/iet-rsn.2017.0449.
Pełny tekst źródłaZhang, Mengmeng, Wei Li, Ran Tao i Song Wang. "Transfer Learning for Optical and SAR Data Correspondence Identification With Limited Training Labels". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14 (2021): 1545–57. http://dx.doi.org/10.1109/jstars.2020.3044643.
Pełny tekst źródłaDavari, Amirabbas, Erchan Aptoula, Berrin Yanikoglu, Andreas Maier i Christian Riess. "GMM-Based Synthetic Samples for Classification of Hyperspectral Images With Limited Training Data". IEEE Geoscience and Remote Sensing Letters 15, nr 6 (czerwiec 2018): 942–46. http://dx.doi.org/10.1109/lgrs.2018.2817361.
Pełny tekst źródłaSun, Yuanshuang, Yinghua Wang, Hongwei Liu, Ning Wang i Jian Wang. "SAR Target Recognition With Limited Training Data Based on Angular Rotation Generative Network". IEEE Geoscience and Remote Sensing Letters 17, nr 11 (listopad 2020): 1928–32. http://dx.doi.org/10.1109/lgrs.2019.2958379.
Pełny tekst źródłaZeng, Dan, Luuk Spreeuwers, Raymond Veldhuis i Qijun Zhao. "Combined training strategy for low-resolution face recognition with limited application-specific data". IET Image Processing 13, nr 10 (22.08.2019): 1790–96. http://dx.doi.org/10.1049/iet-ipr.2018.5732.
Pełny tekst źródłaShin, Hyunkyung, Hyeonung Shin, Wonje Choi, Jaesung Park, Minjae Park, Euiyul Koh i Honguk Woo. "Sample-Efficient Deep Learning Techniques for Burn Severity Assessment with Limited Data Conditions". Applied Sciences 12, nr 14 (21.07.2022): 7317. http://dx.doi.org/10.3390/app12147317.
Pełny tekst źródła