Artykuły w czasopismach na temat „Light-based Intrusion classification system”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Light-based Intrusion classification system”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jecheva, Veselina, i Evgeniya Nikolova. "Classification Trees as a Technique for Creating Anomaly-Based Intrusion Detection Systems". Serdica Journal of Computing 3, nr 4 (11.01.2010): 335–58. http://dx.doi.org/10.55630/sjc.2009.3.335-358.
Pełny tekst źródłaSandosh, S., Dr V. Govindasamy i Dr G. Akila. "Novel Pattern Matching based Alert Classification Approach For Intrusion Detection System". Journal of Advanced Research in Dynamical and Control Systems 11, nr 11-SPECIAL ISSUE (29.11.2019): 279–89. http://dx.doi.org/10.5373/jardcs/v11sp11/20193032.
Pełny tekst źródłaKamble, Arvind, i Virendra S. Malemath. "Adam Improved Rider Optimization-Based Deep Recurrent Neural Network for the Intrusion Detection in Cyber Physical Systems". International Journal of Swarm Intelligence Research 13, nr 3 (1.07.2022): 1–22. http://dx.doi.org/10.4018/ijsir.304402.
Pełny tekst źródłaAhmad, Iftikhar, Qazi Emad Ul Haq, Muhammad Imran, Madini O. Alassafi i Rayed A. AlGhamdi. "An Efficient Network Intrusion Detection and Classification System". Mathematics 10, nr 3 (8.02.2022): 530. http://dx.doi.org/10.3390/math10030530.
Pełny tekst źródłaMohammed, Bilal, i Ekhlas K. Gbashi. "Intrusion Detection System for NSL-KDD Dataset Based on Deep Learning and Recursive Feature Elimination". Engineering and Technology Journal 39, nr 7 (25.07.2021): 1069–79. http://dx.doi.org/10.30684/etj.v39i7.1695.
Pełny tekst źródłaAli, Rashid, i Supriya Kamthania. "A Comparative Study of Different Relevant Features Hybrid Neural Networks Based Intrusion Detection Systems". Advanced Materials Research 403-408 (listopad 2011): 4703–10. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.4703.
Pełny tekst źródłaUgendhar, A., Babu Illuri, Sridhar Reddy Vulapula, Marepalli Radha, Sukanya K, Fayadh Alenezi, Sara A. Althubiti i Kemal Polat. "A Novel Intelligent-Based Intrusion Detection System Approach Using Deep Multilayer Classification". Mathematical Problems in Engineering 2022 (6.05.2022): 1–10. http://dx.doi.org/10.1155/2022/8030510.
Pełny tekst źródłaAfzal, Shehroz, i Jamil Asim. "Systematic Literature Review over IDPS, Classification and Application in its Different Areas". STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH 3, nr 2 (31.12.2021): 189–223. http://dx.doi.org/10.52700/scir.v3i2.58.
Pełny tekst źródłaAfzal, Shehroz, i Jamil Asim. "Systematic Literature Review over IDPS, Classification and Application in its Different Areas". STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH 3, nr 2 (31.12.2021): 189–223. http://dx.doi.org/10.52700/scir.v3i2.58.
Pełny tekst źródłaAlzahrani, Mohammed Saeed, i Fawaz Waselallah Alsaade. "Computational Intelligence Approaches in Developing Cyberattack Detection System". Computational Intelligence and Neuroscience 2022 (18.03.2022): 1–16. http://dx.doi.org/10.1155/2022/4705325.
Pełny tekst źródłaMulyanto, Mulyanto, Muhamad Faisal, Setya Widyawan Prakosa i Jenq-Shiou Leu. "Effectiveness of Focal Loss for Minority Classification in Network Intrusion Detection Systems". Symmetry 13, nr 1 (22.12.2020): 4. http://dx.doi.org/10.3390/sym13010004.
Pełny tekst źródłaWang, Li Fang. "Anomaly Intrusion Detection Based on Concept Lattice". Applied Mechanics and Materials 220-223 (listopad 2012): 2388–92. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.2388.
Pełny tekst źródłaZhao, Xuemin. "Application of Data Mining Technology in Software Intrusion Detection and Information Processing". Wireless Communications and Mobile Computing 2022 (9.06.2022): 1–8. http://dx.doi.org/10.1155/2022/3829160.
Pełny tekst źródłaKhattab M. Ali Alheeti, Ali Azawii Abdu Lateef, Abdulkareem Alzahrani, Azhar Imran i Duaa Al_Dosary. "Cloud Intrusion Detection System Based on SVM". International Journal of Interactive Mobile Technologies (iJIM) 17, nr 11 (7.06.2023): 101–14. http://dx.doi.org/10.3991/ijim.v17i11.39063.
Pełny tekst źródłaGanapathy, S., P. Yogesh i A. Kannan. "Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM". Computational Intelligence and Neuroscience 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/850259.
Pełny tekst źródłaAlwan, Karrar, Ahmed AbuEl-Atta i Hala Zayed. "Feature Selection Models Based on Hybrid Firefly Algorithm with Mutation Operator for Network Intrusion Detection". International Journal of Intelligent Engineering and Systems 14, nr 1 (28.02.2021): 192–202. http://dx.doi.org/10.22266/ijies2021.0228.19.
Pełny tekst źródłaLaxkar, Pradeep, i Prasun Chakrabarti. "Comparison of intrusion detection system based on feature extraction". International Journal of Engineering & Technology 7, nr 3.3 (8.06.2018): 536. http://dx.doi.org/10.14419/ijet.v7i2.33.14829.
Pełny tekst źródłaPreethi D. i Neelu Khare. "An Intelligent Network Intrusion Detection System Using Particle Swarm Optimization (PSO) and Deep Network Networks (DNN)". International Journal of Swarm Intelligence Research 12, nr 2 (kwiecień 2021): 57–73. http://dx.doi.org/10.4018/ijsir.2021040104.
Pełny tekst źródłaWang, Qian, Wenfang Zhao i Jiadong Ren. "Intrusion detection algorithm based on image enhanced convolutional neural network". Journal of Intelligent & Fuzzy Systems 41, nr 1 (11.08.2021): 2183–94. http://dx.doi.org/10.3233/jifs-210863.
Pełny tekst źródłaAlzubi, Omar A., Jafar A. Alzubi, Moutaz Alazab, Adnan Alrabea, Albara Awajan i Issa Qiqieh. "Optimized Machine Learning-Based Intrusion Detection System for Fog and Edge Computing Environment". Electronics 11, nr 19 (22.09.2022): 3007. http://dx.doi.org/10.3390/electronics11193007.
Pełny tekst źródłaKumar, Kapil, Arvind Kumar, Vimal Kumar i Sunil Kumar. "A Hybrid Classification Technique for Enhancing the Effectiveness of Intrusion Detection Systems Using Machine Learning". International Journal of Organizational and Collective Intelligence 12, nr 1 (styczeń 2022): 1–18. http://dx.doi.org/10.4018/ijoci.2022010102.
Pełny tekst źródłaPamela Vinitha Eric, Mathiyalagan R,. "An Efficient Intrusion Detection System Using Improved Bias Based Convolutional Neural Network Classifier". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 6 (5.04.2021): 2468–82. http://dx.doi.org/10.17762/turcomat.v12i6.5689.
Pełny tekst źródłaLee, JooHwa, i KeeHyun Park. "AE-CGAN Model based High Performance Network Intrusion Detection System". Applied Sciences 9, nr 20 (10.10.2019): 4221. http://dx.doi.org/10.3390/app9204221.
Pełny tekst źródłaImrana, Yakubu, Yanping Xiang, Liaqat Ali, Zaharawu Abdul-Rauf, Yu-Chen Hu, Seifedine Kadry i Sangsoon Lim. "χ2-BidLSTM: A Feature Driven Intrusion Detection System Based on χ2 Statistical Model and Bidirectional LSTM". Sensors 22, nr 5 (4.03.2022): 2018. http://dx.doi.org/10.3390/s22052018.
Pełny tekst źródłaHan, Jonghoo, i Wooguil Pak. "Hierarchical LSTM-Based Network Intrusion Detection System Using Hybrid Classification". Applied Sciences 13, nr 5 (27.02.2023): 3089. http://dx.doi.org/10.3390/app13053089.
Pełny tekst źródłaKumar, Yadala Prabhu, i Burra Vijaya Babu. "Stabbing of Intrusion with Learning Framework Using Auto Encoder Based Intellectual Enhanced Linear Support Vector Machine for Feature Dimensionality Reduction". Revue d'Intelligence Artificielle 36, nr 5 (23.12.2022): 737–43. http://dx.doi.org/10.18280/ria.360511.
Pełny tekst źródłaPreethi D. i Neelu Khare. "EFS-LSTM (Ensemble-Based Feature Selection With LSTM) Classifier for Intrusion Detection System". International Journal of e-Collaboration 16, nr 4 (październik 2020): 72–86. http://dx.doi.org/10.4018/ijec.2020100106.
Pełny tekst źródłaPriyadarsini, Pullagura Indira, i G. Anuradha. "A novel ensemble modeling for intrusion detection system". International Journal of Electrical and Computer Engineering (IJECE) 10, nr 2 (1.04.2020): 1963. http://dx.doi.org/10.11591/ijece.v10i2.pp1963-1971.
Pełny tekst źródłaLodhi, Mala Bharti, Vineet Richhariya i Mahesh Parmar. "AN IMPLEMENTATION OF IDS IN A HYBRID APPROACH AND KDD CUP DATASET". International Journal of Research -GRANTHAALAYAH 2, nr 3 (31.12.2014): 1–9. http://dx.doi.org/10.29121/granthaalayah.v2.i3.2014.3055.
Pełny tekst źródłaYuhong Wu, Yuhong Wu, i Xiangdong Hu Yuhong Wu. "AMS Intrusion Detection Method Based on Improved Generalized Regression Neural Network". 網際網路技術學刊 24, nr 2 (marzec 2023): 549–63. http://dx.doi.org/10.53106/160792642023032402029.
Pełny tekst źródłaKannan, Anand, Karthik Gururajan Venkatesan, Alexandra Stagkopoulou, Sheng Li, Sathyavakeeswaran Krishnan i Arifur Rahman. "A Novel Cloud Intrusion Detection System Using Feature Selection and Classification". International Journal of Intelligent Information Technologies 11, nr 4 (październik 2015): 1–15. http://dx.doi.org/10.4018/ijiit.2015100101.
Pełny tekst źródłaAbdulameer, Hasan, Inam Musa i Noora Salim Al-Sultani. "Three level intrusion detection system based on conditional generative adversarial network". International Journal of Electrical and Computer Engineering (IJECE) 13, nr 2 (1.04.2023): 2240. http://dx.doi.org/10.11591/ijece.v13i2.pp2240-2258.
Pełny tekst źródłaVishwakarma, Uma, Prof Anurag Jain i Prof Akriti Jain. "A Review of Feature Reduction in Intrusion Detection System Based on Artificial Immune System and Neural Network". INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 9, nr 3 (15.07.2013): 1127–33. http://dx.doi.org/10.24297/ijct.v9i3.3338.
Pełny tekst źródłaCai, Yu. "Mobile Agent Based Network Defense System in Enterprise Network". International Journal of Handheld Computing Research 2, nr 1 (styczeń 2011): 41–54. http://dx.doi.org/10.4018/jhcr.2011010103.
Pełny tekst źródłaGondal, Farzana Kausar. "Mobile Agent (MA) Based Intrusion Detection Systems (IDS): A Systematic Review". Innovative Computing Review 1, nr 2 (26.12.2021): 85–102. http://dx.doi.org/10.32350/icr.0102.05.
Pełny tekst źródłaAbuadlla, Yousef, Omran Ben Taher i Hesham Elzentani. "Flow Based Intrusion Detection System Using Multistage Neural Network". مجلة الجامعة الأسمرية: العلوم التطبيقية 2, nr 2 (30.12.2017): 87–77. http://dx.doi.org/10.59743/aujas.v2i2.1158.
Pełny tekst źródłaWu, Yuhong, i Xiangdong Hu. "An Intrusion Detection Method Based on Fully Connected Recurrent Neural Network". Scientific Programming 2022 (26.09.2022): 1–11. http://dx.doi.org/10.1155/2022/7777211.
Pełny tekst źródłaPise, Nitin. "APPLICATION OF MACHINE LEARNING FOR INTRUSION DETECTION SYSTEM". INFORMATION TECHNOLOGY IN INDUSTRY 9, nr 1 (1.03.2021): 314–23. http://dx.doi.org/10.17762/itii.v9i1.134.
Pełny tekst źródłaPietro Spadaccino i Francesca Cuomo. "Intrusion detection systems for IoT: Opportunities and challenges offered by edge computing". ITU Journal on Future and Evolving Technologies 3, nr 2 (22.09.2022): 408–20. http://dx.doi.org/10.52953/wnvi5792.
Pełny tekst źródłaTian, Yuyang. "Abnormal Traffic Prediction and Classification based on Information Big Data". Highlights in Science, Engineering and Technology 23 (3.12.2022): 145–53. http://dx.doi.org/10.54097/hset.v23i.3216.
Pełny tekst źródłaAlmuhairi, Thani, Ahmad Almarri i Khalid Hokal. "An Artificial Intelligence-based Intrusion Detection System". Journal of Cybersecurity and Information Management 07, nr 02 (1.04.2021): 95–111. http://dx.doi.org/10.54216/jcim.07.02.04.
Pełny tekst źródłaDuhayyim, Mesfer Al, Khalid A. Alissa, Fatma S. Alrayes, Saud S. Alotaibi, ElSayed M. Tag El Din, Amgad Atta Abdelmageed, Ishfaq Yaseen i Abdelwahed Motwakel. "Evolutionary-Based Deep Stacked Autoencoder for Intrusion Detection in a Cloud-Based Cyber-Physical System". Applied Sciences 12, nr 14 (7.07.2022): 6875. http://dx.doi.org/10.3390/app12146875.
Pełny tekst źródłaAbdulrahman, Amer A., i Mahmood K. Ibrahem. "Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms". Iraqi Journal of Information & Communications Technology 1, nr 3 (1.02.2019): 49–55. http://dx.doi.org/10.31987/ijict.1.3.40.
Pełny tekst źródłaJiang, Xue Song, Xiu Mei Wei i Yu Shui Geng. "The Research of Intrusion Detection System Based on ANN on Cloud Platform". Applied Mechanics and Materials 263-266 (grudzień 2012): 2962–65. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.2962.
Pełny tekst źródłaSampath, Nithya, i Dinakaran M. "Flow Based Classification for Specification Based Intrusion Detection in Software Defined Networking". International Journal of Software Innovation 7, nr 2 (kwiecień 2019): 1–8. http://dx.doi.org/10.4018/ijsi.2019040101.
Pełny tekst źródłaFarhana, Kaniz, Maqsudur Rahman i Md Tofael Ahmed. "An intrusion detection system for packet and flow based networks using deep neural network approach". International Journal of Electrical and Computer Engineering (IJECE) 10, nr 5 (1.10.2020): 5514. http://dx.doi.org/10.11591/ijece.v10i5.pp5514-5525.
Pełny tekst źródłaZhou, Yulin, Lun Xie i Hang Pan. "Research on a PSO-H-SVM-Based Intrusion Detection Method for Industrial Robotic Arms". Applied Sciences 12, nr 6 (8.03.2022): 2765. http://dx.doi.org/10.3390/app12062765.
Pełny tekst źródłaLi, Wenchao, Ping Yi, Yue Wu, Li Pan i Jianhua Li. "A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network". Journal of Electrical and Computer Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/240217.
Pełny tekst źródłaHussien et al., Zaid. "Anomaly Detection Approach Based on Deep Neural Network and Dropout". Baghdad Science Journal 17, nr 2(SI) (23.06.2020): 0701. http://dx.doi.org/10.21123/bsj.2020.17.2(si).0701.
Pełny tekst źródłaProtić, Danijela. "Intrusion detection based on the artificial immune system". Vojnotehnicki glasnik 68, nr 4 (2020): 790–803. http://dx.doi.org/10.5937/vojtehg68-27954.
Pełny tekst źródła