Gotowa bibliografia na temat „Light angular momentum”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Light angular momentum”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Light angular momentum"

1

Stewart *, A. M. "Angular momentum of light". Journal of Modern Optics 52, nr 8 (20.05.2005): 1145–54. http://dx.doi.org/10.1080/09500340512331326832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Franke-Arnold, Sonja. "Optical angular momentum and atoms". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, nr 2087 (28.02.2017): 20150435. http://dx.doi.org/10.1098/rsta.2015.0435.

Pełny tekst źródła
Streszczenie:
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’.
Style APA, Harvard, Vancouver, ISO itp.
3

Schimmoller, Alex, Spencer Walker i Alexandra S. Landsman. "Photonic Angular Momentum in Intense Light–Matter Interactions". Photonics 11, nr 9 (17.09.2024): 871. http://dx.doi.org/10.3390/photonics11090871.

Pełny tekst źródła
Streszczenie:
Light contains both spin and orbital angular momentum. Despite contributing equally to the total photonic angular momentum, these components derive from quite different parts of the electromagnetic field profile, namely its polarization and spatial variation, respectively, and therefore do not always share equal influence in light–matter interactions. With the growing interest in utilizing light’s orbital angular momentum to practice added control in the study of atomic systems, it becomes increasingly important for students and researchers to understand the subtlety involved in these interactions. In this article, we present a review of the fundamental concepts and recent experiments related to the interaction of beams containing orbital angular momentum with atoms. An emphasis is placed on understanding light’s angular momentum from the perspective of both classical waves and individual photons. We then review the application of these beams in recent experiments, namely single- and few-photon transitions, strong-field ionization, and high-harmonic generation, highlighting the role of light’s orbital angular momentum and the atom’s location within the beam profile within each case.
Style APA, Harvard, Vancouver, ISO itp.
4

Masalov, A. V., i V. G. Niziev. "Angular momentum of gaussian light beams". Bulletin of the Russian Academy of Sciences: Physics 80, nr 7 (lipiec 2016): 760–65. http://dx.doi.org/10.3103/s1062873816070170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nairat, Mazen. "Axial Angular Momentum of Bessel Light". Photonics Letters of Poland 10, nr 1 (31.03.2018): 23. http://dx.doi.org/10.4302/plp.v10i1.787.

Pełny tekst źródła
Streszczenie:
Both linear and angular momentum densities of Bessel, Gaussian-Bessel, and Hankel-Bessel lasers are determined. Angular momentum of the three Bessel beams is illustrated at linear and circular polarization. Axial Angular momentum is resolved in particular interpretation: the harmonic order of the physical light momentum. Full Text: PDF ReferencesG. Molina-Terriza, J. Torres, and L. Torner, "Twisted photons", Nature Physics 3, 305 - 310 (2007). CrossRef J Arlt, V Garces-Chavez, W Sibbett, and K Dholakia "Optical micromanipulation using a Bessel light beam", Opt. Commun., 197, 4-6, (2001). CrossRef L. Ambrosio and H. Hernández-Figueroa, "Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime", Opt Exp, 18, 23 (2010). CrossRef I. Litvin, A. Dudley and A. Forbes, "Poynting vector and orbital angular momentum density of superpositions of Bessel beams", Opt Exp, 19, 18 (2011). CrossRef K Volke-Sepulveda, V Garcés-Chávez, S Chávez-Cerda, J Arlt and K Dholakia "Orbital angular momentum of a high-order Bessel light beam" , JOP B 4 (2). 2002. CrossRef M. Verma, S. Pal, S. Joshi, P. Senthilkumaran, J. Joseph, and H Kandpal, "Singularities in cylindrical vector beams", Jou. of Mod. Opt., 62 (13), 2015. CrossRef R. Borghi, M. Santarsiero, and M. Porras, "Nonparaxial Bessel?Gauss beams", J. Opt. Soc. Am. A, 18 (7) (2011). CrossRef L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes", Phys Rev A, 45 (11): 8185-8189 (1992). CrossRef D. Mcglion and K. Dholakia, "Bessel beams: diffraction in a new light", Cont. Phys, 46(1) 15 ? 28. (2005). CrossRef F. Gori, G. Guattari and C. Padovani," Bessel-Gauss Beams", Opt. Commun., 64, 491, (1987). CrossRef V. Kotlyar, A. Kovalev, and A. Soifer, "Hankel?Bessel laser beams" J. Opt. Soc. Am. A, 29 (5) (2012). CrossRef L. Allen and M. Babiker "Spin-orbit coupling in free-space Laguerre-Gaussian light beams", Phys. Rev. A 53, R2937. CrossRef
Style APA, Harvard, Vancouver, ISO itp.
6

Ritsch-Marte, Monika. "Orbital angular momentum light in microscopy". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, nr 2087 (28.02.2017): 20150437. http://dx.doi.org/10.1098/rsta.2015.0437.

Pełny tekst źródła
Streszczenie:
Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application. This article is part of the themed issue ‘Optical orbital angular momentum’.
Style APA, Harvard, Vancouver, ISO itp.
7

Ornigotti, Marco, i Andrea Aiello. "Surface angular momentum of light beams". Optics Express 22, nr 6 (13.03.2014): 6586. http://dx.doi.org/10.1364/oe.22.006586.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hugrass, W. N. "Angular Momentum Balance on Light Reflection". Journal of Modern Optics 37, nr 3 (marzec 1990): 339–51. http://dx.doi.org/10.1080/09500349014550401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhou, Hailong, Jianji Dong, Jian Wang, Shimao Li, Xinlun Cai, Siyuan Yu i Xinliang Zhang. "Orbital Angular Momentum Divider of Light". IEEE Photonics Journal 9, nr 1 (luty 2017): 1–8. http://dx.doi.org/10.1109/jphot.2016.2645896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ballantine, Kyle E., John F. Donegan i Paul R. Eastham. "There are many ways to spin a photon: Half-quantization of a total optical angular momentum". Science Advances 2, nr 4 (kwiecień 2016): e1501748. http://dx.doi.org/10.1126/sciadv.1501748.

Pełny tekst źródła
Streszczenie:
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constantħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Light angular momentum"

1

Cameron, Robert P. "On the angular momentum of light". Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5849/.

Pełny tekst źródła
Streszczenie:
The idea is now well established that light possesses angular momentum and that this comes in two distinct forms, namely spin and orbital angular momentum which are associated with circular polarisation and helical phase fronts respectively. In this thesis, we explain that this is, in fact, a mere glimpse of a much larger picture: light possesses an infinite number of distinct angular momenta, the conservation of which in the strict absence of charge reflects the myriad rotational symmetries then inherent to Maxwell's equations. We recognise, moreover, that many of these angular momenta can be identified explicitly in light-matter interactions, which leads us in particular to identify new possibilities for the use of light to probe and manipulate chiral molecules.
Style APA, Harvard, Vancouver, ISO itp.
2

Vannier, dos santos borges Carolina. "Bell inequalities with Orbital Angular Momentum of Light". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00767216.

Pełny tekst źródła
Streszczenie:
We shall present a theoretical description of paraxial beams, showing the propagation modes that arise from the solution of the paraxial equation in free space. We then discuss the angular momentum carried by light beams, with its decomposition in spin and orbital angular momentum and its quantization. We present the polarization and transverse modes of a beam as potential degrees of freedom to encode information. We define the Spin-Orbit modes and explain the experimental methods to produce such modes. We then apply the Spin-Orbit modes to perform a BB84 quantum key distribution protocol without a shared reference frame.We propose a Bell-like inequality criterion as a sufficient condition for the spin-orbit non-separability of a classical laser beam. We show that the notion of separable and non-separable spin-orbit modes in classical optics builds a useful analogy with entangled quantum states, allowing for the study of some of their important mathematical properties. We present a detailed quantum optical description of the experiment in which a comprehensive range of quantum states are considered.Following the study of Bell's inequalities we consider bipartite quantum systems characterized by a continuous angular variable θ. We show how to reveal non-locality on this type of system using inequalities similar to CHSH ones, originally derived for bipartite spin 1/2 like systems. Such inequalities involve correlated measurement of continuous angular functions and are equivalent to the continuous superposition of CHSH inequalities acting on two-dimensional subspaces of the infinite dimensional Hilbert space. As an example, we discuss in detail one application of our results, which consists in measuring orientation correlations on the transverse profile of entangled photons.
Style APA, Harvard, Vancouver, ISO itp.
3

Vannier, Dos Santos Borges Carolina. "Bell inequalities with Orbital Angular Momentum of Light". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112225/document.

Pełny tekst źródła
Streszczenie:
Dans une première partie introductive, nous rappelons la description théorique de la propagation de faisceaux optiques en terme des modes solutions de l'équation de propagation dans l'approximation paraxialle. Dans ce cadre, nous présentons les notions de moment cinétique transporté par les faisceaux lumineux, et de sa décomposition en moment cinétique intrinsèque (ou spin) et en moment angulaire.La seconde partie est consacrée au codage de l'information dans les degrés de libertés de polarisation et de modes transverses des faisceaux optiques. Les modes spin-orbites sont définis et un dispositif expérimental optique pour produire ces modes est présenté. Les modes spin-orbites sont alors exploités pour implémenter un protocole de distribution de clés BB84 ne nécessitant pas le partage à priori d'une base de référence.Dans une troisième partie, nous proposons un critère de type inégalité de Bell, qui constitue une condition suffisante pour caractériser la non-séparabilité en spin-orbite d'un faisceau optique classique. Nous montrons ensuite que la notion de modes spin-orbite séparable ou non-séparable constitue une analogie pertinente avec la notion d'intrication d'états quantiques et permet l'étude de certaines de ses propriétés fondamentales. Enfin, une implémentation expérimentale de cette simulation de tests de Bell avec des faisceaux optiques classiques est présentée, ainsi que sa description détaillée dans le cadre de l'optique quantique.Dans une dernière partie, nous nous intéressons à des inégalités de Bell, pour des états quantiques de systèmes quantiques à deux parties, qui sont caractérisées chacune par une variable continue de type angulaire (périodique). Nous montrons comment détecter la non-localité sur ce type de système, avec des inégalités qui sont similaires aux inégalités CHSH; inégalités qui avaient été développées originellement pour des systèmes de type spin 1/2. Nos inégalités, sont construites à partir de la mesure de la corrélation de fonctions angulaires. Nous montrons qu'elles sont en fait la superposition continue d'inégalités CHSH de type spin 1/2. Nous envisageons une possible implémentation expérimentale, où les corrélations mesurées sont les corrélations angulaires du profil transverse des photons intriqués
We shall present a theoretical description of paraxial beams, showing the propagation modes that arise from the solution of the paraxial equation in free space. We then discuss the angular momentum carried by light beams, with its decomposition in spin and orbital angular momentum and its quantization. We present the polarization and transverse modes of a beam as potential degrees of freedom to encode information. We define the Spin-Orbit modes and explain the experimental methods to produce such modes. We then apply the Spin-Orbit modes to perform a BB84 quantum key distribution protocol without a shared reference frame.We propose a Bell-like inequality criterion as a sufficient condition for the spin-orbit non-separability of a classical laser beam. We show that the notion of separable and non-separable spin-orbit modes in classical optics builds a useful analogy with entangled quantum states, allowing for the study of some of their important mathematical properties. We present a detailed quantum optical description of the experiment in which a comprehensive range of quantum states are considered.Following the study of Bell's inequalities we consider bipartite quantum systems characterized by a continuous angular variable θ. We show how to reveal non-locality on this type of system using inequalities similar to CHSH ones, originally derived for bipartite spin 1/2 like systems. Such inequalities involve correlated measurement of continuous angular functions and are equivalent to the continuous superposition of CHSH inequalities acting on two-dimensional subspaces of the infinite dimensional Hilbert space. As an example, we discuss in detail one application of our results, which consists in measuring orientation correlations on the transverse profile of entangled photons
Style APA, Harvard, Vancouver, ISO itp.
4

Gotte, Jorge Bernhard. "Integral and fractional orbital angular momentum of light". Thesis, University of Strathclyde, 2006. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26372.

Pełny tekst źródła
Streszczenie:
Orbital angular momentum of light is a new field of research which is concerned with the mechanical and optical effects of light with a helical phase structure. In this thesis we ask fundamental questions on the properties of light carrying orbital angular momentum. We discuss the uncertainty relation for angle and angular momentum on the example of orbital angular momentum of light. The lower bound in the angular uncertainty relation is state dependent, which requires a distinction between states satisfying the equality in the uncertainty relation and states giving a minimum in the uncertainty product. We examine these special states and their uncertainty product. We show that for both kinds of states, the uncertainty product can be surprisingly large. We propose an experimentally testable criterion for an EPR paradox for orbital angular momentum and azimuthal angle. The criterion is designed for an experimental demonstration using orbital angular momentum of light. For the interpretation of future experimental results from the proposed setup, we include a model for the indeterminacies inherent to the angular position measurement. We show how angular apertures can be used to determine the angle, and we discuss the effects of this measurement on the proposed criterion. We show that for a class of aperture functions a demonstration of an angular EPR paradox, according to our criterion, is to be expected. The quantum theory of rotation angles is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.
Style APA, Harvard, Vancouver, ISO itp.
5

Neo, Richard. "Measuring the Orbital Angular Momentum of Light for Astronomy". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17718.

Pełny tekst źródła
Streszczenie:
While the story of optical orbital angular momentum (OAM) dates back to the development of Maxwell's equations, the study of photon OAM by the physics community begins in earnest in the 1990s, led in part by a paper by Allen et al. describing the independent control of spin and orbital angular momentum in paraxial modes of light. The recognition of the orbital angular momentum of light in astronomy is a much more recent affair. This thesis explores the role of the OAM of light in astronomy and attempts to make the case for the measurement of photon OAM as a new tool in astronomy. Two contributions are made in order to prepare the groundwork for future endeavours: a laboratory assessment of the effectiveness of adaptive optics (AO) systems on atmospheric turbulence when measuring optical OAM, and an initial field test of an instrument measuring the optical OAM spectrum of the sun. Regarding the first study, the author finds that realistic atmospheric turbulence (1'' seeing) severely corrupts any incoming OAM signal at visible wavelengths, in spite of AO correction (<10% power recovered), however results suggest adequate correction at IR wavelengths. In the second study, an instrument to measure the OAM spectrum of a source is constructed and employed to measure the OAM spectrum of local regions of the sun. It represents the first measurement of its kind, distinguishing sunspots by analyzing their OAM spectrum and in addition, demonstrates the improvement of OAM measurements by implementing a lucky imaging routine. Finally, this thesis highlights a new avenue for further study into the measurement of OAM for observational astronomy. A new type of OAM measurement is proposed, capable of measuring rotations in the plane orthogonal to the line of sight. This measurement takes advantage of the rotational Doppler shift, an analogue of the translational Doppler shift, and an OAM interferometer designed to measure the associated phase shift is outlined. A future instrument is also proposed by combining the OAM interferometer with a high resolution spectrograph. This would allow for measurements of both the rotational and translational Doppler shifts, providing information about the three dimensional motion of an object.
Style APA, Harvard, Vancouver, ISO itp.
6

Chang, Yuan-Pin. "Novel probes of angular momentum polarization". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d3880edf-436a-415e-8a74-6b1c0fd26e65.

Pełny tekst źródła
Streszczenie:
New dynamical applications of quantum beat spectroscopy (QBS) to molecular dynamics are employed to probe the angular momentum polarization effects in photodissociation and molecular collisions. The magnitude and the dynamical behaviour of angular momentum alignment and orientation, two types of polarization, can be measured via QBS technique on a shot-by-shot basis. The first part of this thesis describes the experimental studies of collisional angular momentum depolarization for the electronically excited state radicals in the presence of the collider partners. Depolarization accompanies both inelastic collisions, giving rise to rotational energy transfer (RET), and elastic collisions. Experimental results also have a fairly good agreement with the results of quasi-classical trajectory scattering calculations. Chapter 1 provides the brief theories about the application of the QBS technique and collisional depolarization. Chapter 2 describes the method and instrumentation employed in the experiments of this work. In Chapter 3, the QBS technique is used to measure the total elastic plus elastic depolarization rate constants under thermal conditions for NO(A,v=0) in the presence of He, Ar, N2, and O2. In the case of NO(A) with Ar, and particularly with He, collisional depolarization is significantly smaller than RET, reflecting the weak long-range forces in these systems. In the case of NO(A)+N2/O2, collisional depolarization and RET are comparable, reflecting the relatively strong long-range forces in these systems. In Chapter 4, the QBS technique is used to measure the elastic and inelastic depolarization and total RET rate constants for OH(A,v=0) under thermal conditions in the presence of He and Ar, as well as the total depolarization rate constants under superthermal conditions. In the case of OH(A)+He, elastic depolarization is sensitive to the N rotational state, and inelastic depolarization is strongly dependent on the collision energy. In the case of OH(A)+Ar, elastic depolarization is insensitive to N, and inelastic depolarization is less sensitive to the collision energy, reflecting that the relatively strong long-range force in OH(A)+Ar system. The second part of this thesis describes the experimental studies of photodissociation under thermal conditions. Chapter 5 provides a brief introduction about several polarization parameter formalisms used for photodissociation, and the incorporation of the QBS technique to measure these polarization parameters. In this thesis, most polarization parameters of the molecular photofragments are measured using the LIF method, and the QBS technique is used as a complementary tool to probe these polarization parameters. In Chapter 6, rotational orientation in the OH(X,v=0) photofragments from H2O2 photodissociation using circularly polarized light at 193 nm is observed. Although H2O2 can be excited to both the A and B electronic states by 193 nm, the observed orientation is only related to the A state dynamics. A proposed mechanism about the coupling between a polarized photon and the H2O2 parent rotation is simulated, and the good agreement between the experimental and simulation results further confirms the validity of this mechanism. In Chapter 7, rotational orientation in the NO(X,v) photofragments from NO2 photodissociation using circularly polarized light at 306 nm (v=0,1,2) and at 355 nm (v=0,1) is observed. Two possible mechanisms, the parent molecular rotation and the coherent effect between multiple electronic states, are discussed. NOCl is photodissociated using circularly polarized light at 306 nm, and NO(X,v) rotational distributions (v=0,1) and rotational orientation (v=0) are measured. For the case of NOCl, the generation of orientation is attributed to the coherent effect.
Style APA, Harvard, Vancouver, ISO itp.
7

McLaren, Melanie. "Tailoring quantum entanglement of orbital angular momentum". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95868.

Pełny tekst źródła
Streszczenie:
Thesis (PhD)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: High-dimensional quantum entanglement offers an increase in information capacity per photon; a highly desirable property for quantum information processes such as quantum communication, computation and teleportation. As the orbital angular momentum (OAM) modes of light span an infinite-dimensional Hilbert space, they have become frontrunners in achieving entanglement in higher dimensions. In light of this, we investigate the potential of OAM entanglement of photons by controlling the parameters in both the generation and measurement systems. We show the experimental procedures and apparatus involved in generating and measuring entangled photons in two-dimensions. We verify important quantum tests such as the Einstein, Podolsky and Rosen (EPR) paradox using OAM and angle correlations, as well as a violation of a Bell-type inequality. By performing a full state tomography, we characterise our quantum state and show we have a pure, highly entangled quantum state. We demonstrate that this method can be extended to higher dimensions. The experimental techniques used to generate and measure OAM entanglement place an upper bound on the number of accessible OAM modes. As such, we investigate new methods in which to increase the spiral bandwidth of our generated quantum state. We alter the shape of the pump beam in spontaneous parametric down-conversion and demonstrate an effect on both OAM and angle correlations. We also made changes to the measurement scheme by projecting the photon pairs into the Bessel-Gaussian (BG) basis and demonstrate entanglement in this basis. We show that this method allows the measured spiral bandwidth to be optimised by simply varying the continuous radial parameter of the BG modes. We demonstrate that BG modes can be entangled in higher dimensions compared with the commonly used helical modes by calculating and comparing the linear entropy and fidelity for both modes. We also show that quantum entanglement can be accurately simulated using classical light using back-projection, which allows the study of projective measurements and predicts the strength of the coincidence correlations in an entanglement experiment. Finally, we make use of each of the techniques to demonstrate the effect of a perturbation on OAM entanglement measured in the BG basis. We investigate the self-healing property of BG beams and show that the classical property is translated to the quantum regime. By calculating the concurrence, we see that measured entanglement recovers after encountering an obstruction.
AFRIKAANSE OPSOMMING: Hoë-dimensionele kwantumverstrengeldheid bied ’n toename in inligtingskapasiteit per foton. Hierdie is ’n hoogs wenslike eienskap vir kwantum inligting prosesse soos kwantum kommunikasie, berekening en teleportasie. Omdat die orbitale hoekmomentum (OAM) modusse van lig ’n oneindig dimensionele Hilbertruimte beslaan, het dit voorlopers geword in die verkryging van verstrengeling in hoër dimensies. In die lig hiervan, ondersoek ons die potensiaal van OAM verstrengeling van fotone deur die parameters in beide die generering en meting stelsels te beheer. Ons toon die eksperimentele prosedures en apparaat wat betrokke is by die generering en die meet van verstrengelde fotone in twee dimensies. Ons verifieer kwantumtoetse, soos die Einstein, Podolsky en Rosen (EPR) paradoks vir OAM en die hoekkorrelasies, sowel as ’n skending van ’n Bell-tipe ongelykheid. Deur middel van ’n volledige toestand tomografie, karakteriseer ons die kwantum toestand en wys ons dat dit ’n suiwer, hoogs verstrengel kwantum toestand is. Ons toon ook dat hierdie metode uitgebrei kan word na hoër dimensies. Die eksperimentele tegnieke wat tydens die generasie en meet van OAM verstrengeling gebruik is, plaas ’n bogrens op die aantal toeganklik OAM modusse. Dus ondersoek ons nuwe metodes om die spiraal bandwydte van ons gegenereerde kwantum toestand te verhoog. Ons verander die vorm van die pomp bundel in spontane parametriese af-omskakeling en demonstreer die uitwerking daarvan op beide OAM en die hoekkorrelasies. Ons het ook veranderinge aan die meting skema gemaak deur die foton pare op die Bessel-Gauss (BG) basis te projekteer. Ons wys dat hierdie metode die gemeetde spiraal bandwydte kan optimeer deur eenvoudig die kontinue radiale parameter van die BG modes te verander. Ons demonstreer dat BG modusse verstrengel kan word in hoër dimensies as die heliese modusse, wat algemeen gebruik word, deur berekeninge te maak en te vergelyk met lineêre entropie en vir beide modusse. Ons wys ook dat kwantumverstrengling akkuraat nageboots kan word, met behulp van die klassieke lig terug-projeksie, wat die studie van projeksie metings toelaat en voorspel die krag van die saamval korrelasies in ’n verstrengeling eksperiment. Ten slotte, gebruik ons elk van die tegnieke om die effek van ’n storing op OAM verstrengling wat in die BG basis gemeet is, te demonstreer. Ons ondersoek die self-genesingseienskap van BG bundels en wys dat die klassieke eienskap vertaal na die kwantum-gebied. Deur die berekening van die konkurrensie (concurrence), sien ons dat die gemeetde verstrengeling herstel word nadat ’n obstruksie ondervind is.
Style APA, Harvard, Vancouver, ISO itp.
8

Gelbord, Todd Richard. "On the geometry and topology of the angular momentum of light". Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/gelbord/GelbordT0510.pdf.

Pełny tekst źródła
Streszczenie:
The classical field theory approach to the angular momentum of light, specifically how it represents the spin angular momentum of light, has been a matter of controversy for some time. This thesis analyses the aforementioned approach from the point of view of the Exterior Calculus and de Rham Cohomology. It is found purely mathematically that the spin angular momentum of a circularly polarized plane wave of light must be identically zero. It is concluded that the classical formulation of the angular momentum of a plane wave of light is, on some level, incomplete.
Style APA, Harvard, Vancouver, ISO itp.
9

Padmabandu, Gamaralalage Gunasiri 1956. "Angular momentum of light and its mechanical effects on a birefringent medium". Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276914.

Pełny tekst źródła
Streszczenie:
The torque exerted by a beam of polarized light on a half-wave plate which alters its state of polarization is calculated for several laser wavelengths and intensities using electromagnetic theory. The second-order torque that arises through the nonlinear interaction is formulated and the numerical values are calculated for the 42m crystal class. The experiment used to detect the existence of the torque is reviewed and a demonstration experiment is suggested.
Style APA, Harvard, Vancouver, ISO itp.
10

An, Fangzhao A. "Experimental Realization of Slowly Rotating Modes of Light". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/53.

Pełny tekst źródła
Streszczenie:
Beams of light can carry spin and orbital angular momentum. Spin angular momentum describes how the direction of the electric field rotates about the propagation axis, while orbital angular momentum describes the rotation of the field amplitude pattern. These concepts are well understood for monochromatic beams, but previous theoretical studies have constructed polychromatic superpositions where the connection between angular momentum and rotation of the electric field becomes much less clear. These states are superpositions of two states of light carrying opposite signs of angular momentum and slightly detuned frequencies. They rotate at the typically small detuning frequency and thus we call them slowly rotating modes of light. Strangely, some of these modes appear to rotate in the direction opposing the sign of their angular momentum, while others exhibit overall rotation with no angular momentum at all! These findings have been the subject of some controversy, and in 2012, Susanna Todaro (HMC ’12) and I began work on trying to shed light on this “angular momentum paradox." In this thesis, I extend previous work in theory, simulation, and experiment. Via theory and modeling in Mathematica, I present a possible intuitive explanation for the angular momentum paradox. I also present experimental realization of slowly rotating spin superpositions, and outline the steps necessary to generate slowly rotating orbital angular momentum superpositions.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Light angular momentum"

1

Andrews, David L., i Mohamed Babiker, red. The Angular Momentum of Light. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511795213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Andrews, David L. The angular momentum of light. Cambridge: Cambridge University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Auzinsh, Marcis. Optical polarization of molecules. Cambridge: Cambridge University Press, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Stough, H. Paul. Flight investigation of stall, spin, and recovery characteristics of a low-wing, single-engine, T-tail light airplane. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Evans, Myron W. The light magnet, coupling of electronic and nuclear angular momenta in optical NMR and ESR: Quantum theory. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sweeney, John Peter. Gamma-ray spectroscopy of the light rare earth nuclei 159Er, 160Er and 167Lu at high angula momenta. Manchester: University of Manchester, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

L, Andrews David, i Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

L, Andrews David, i Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

L, Andrews David, i Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bekshaev, A., M. Soskin i M. Vasnetsov. Paraxial Light Beams with Angular Momentum. Nova Science Pub Inc, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Light angular momentum"

1

Burkardt, Matthias. "Quark Orbital Angular Momentum". W Light Cone 2015, 15–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Burkardt, Matthias. "GPDs and Orbital Angular Momentum". W Light Cone 2016, 21–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dai, Yanan. "Plasmon Orbital Angular Momentum Generation". W Imaging Light with Photoelectrons on the Nano-Femto Scale, 79–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52836-2_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lorcé, Cédric, i Keh-Fei Liu. "Quark and Gluon Orbital Angular Momentum: Where Are We?" W Light Cone 2015, 9–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Allen, Les, i Miles Padgett. "The Orbital Angular Momentum of Light: An Introduction". W Twisted Photons, 1–12. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pisano, Silvia. "Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum". W Light Cone 2015, 353–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_55.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Babiker, M., V. E. Lembessis i L. Allen. "Optical Molasses and the Orbital Angular Momentum of Light". W Coherence and Quantum Optics VII, 367–68. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_57.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ramesh, K., i Vidya Pol. "The Study on Twisted Light Communication Using Orbital Angular Momentum". W Lecture Notes on Data Engineering and Communications Technologies, 453–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1002-1_46.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Niel, Fabien. "Orbital Angular Momentum of Light: A State of the Art". W Classical and Quantum Description of Plasma and Radiation in Strong Fields, 193–210. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Boyd, Robert W., i Miles J. Padgett. "Quantum Mechanical Properties of Light Fields Carrying Orbital Angular Momentum". W Optics in Our Time, 435–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31903-2_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Light angular momentum"

1

Rodríguez-Fajardo, Valeria, Thao P. Nguyen, Kiyan S. Hocek, Jacob M. Freedman i Enrique J. Galvez. "Einstein beams carrying orbital angular momentum". W Complex Light and Optical Forces XVII, redaktorzy David L. Andrews, Enrique J. Galvez i Halina Rubinsztein-Dunlop. SPIE, 2023. http://dx.doi.org/10.1117/12.2651269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhou, Hailong, Jianji Dong, Jian Wang, Xinlun Cai, Siyuan Yu i Xinliang Zhang. "Dividing orbital angular momentum of light". W 2016 15th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2016. http://dx.doi.org/10.1109/icocn.2016.7875871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bordovitsyn, Vladimir A., i Olga A. Konstantinov. "ANGULAR MOMENTUM RADIATION OF SPIN LIGHT". W Proceedings of the Fourteenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814329682_0095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ambrosio, Antonio. "Light structuring through orbital angular momentum". W Quantum Sensing and Nano Electronics and Photonics XX, redaktorzy Manijeh Razeghi, Giti A. Khodaparast i Miriam S. Vitiello. SPIE, 2024. http://dx.doi.org/10.1117/12.3012867.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Suprano, Alessia, Ilaria Gianani, Taira Giordani, Nicolò Spagnolo, Katja Pinker-Domenig, Uwe Klemm, Dimitris Gorpas i in. "Characterization of the transmission of structured light in scattering media". W Polarized light and Optical Angular Momentum for biomedical diagnostics, redaktorzy Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson i Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2583117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Stilgoe, Alexander B., Naran Gillies i Halina Rubinsztein-Dunlop. "Vector beam shaping for transverse angular momentum transfer". W Complex Light and Optical Forces XVII, redaktorzy David L. Andrews, Enrique J. Galvez i Halina Rubinsztein-Dunlop. SPIE, 2023. http://dx.doi.org/10.1117/12.2657224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Daqian, Ji Qi, Baoru Huang, Elizabeth Noble, Danail Stoyanov, Jun Gao i Daniel S. Elson. "A polarization-based smoke removal method for surgical images". W Polarized light and Optical Angular Momentum for biomedical diagnostics, redaktorzy Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson i Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577250.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jacques, Steven L., Ben Urban i Hrebesh M. Subhash. "Polarized light reflectance and the sub-diffuse regime during optical imaging of skin". W Polarized light and Optical Angular Momentum for biomedical diagnostics, redaktorzy Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson i Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2578004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Schucht, Philippe, Hee Ryung Lee, Mohammed Hachem Mezouar, Ekkehard Hewer, Andreas Raabe, Michael Murek, Irena Zubak i in. "Wide-field imaging of brain white matter fiber tracts with Mueller polarimetry in backscattering configuration". W Polarized light and Optical Angular Momentum for biomedical diagnostics, redaktorzy Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson i Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577872.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Germer, Thomas A. "Depolarization in diffusely scattering media". W Polarized light and Optical Angular Momentum for biomedical diagnostics, redaktorzy Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson i Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Light angular momentum"

1

Brodsky, Stanley J. Orbital Angular Momentum on the Light-Front and QCD Observables. Office of Scientific and Technical Information (OSTI), marzec 2006. http://dx.doi.org/10.2172/877429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mahanta, Monisha K. Experimentation of Fiber-Optic Transmission of Light with Orbital Angular Momentum. Fort Belvoir, VA: Defense Technical Information Center, maj 2006. http://dx.doi.org/10.21236/ada451409.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Brodsky, S. J. Light-cone representation of the spin and orbital angular momentum of relativistic composite systems. Office of Scientific and Technical Information (OSTI), marzec 2000. http://dx.doi.org/10.2172/753316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii