Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: LiFe5O8.

Artykuły w czasopismach na temat „LiFe5O8”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „LiFe5O8”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Berbenni, V., A. Marini i D. Capsoni. "Solid State Reaction Study of the System Li2CO3/Fe2O3". Zeitschrift für Naturforschung A 53, nr 12 (1.12.1998): 997–1003. http://dx.doi.org/10.1515/zna-1998-1212.

Pełny tekst źródła
Streszczenie:
Abstract A thermoanalytical (TGA/DSC) and diffractometric (XRD) study has been performed on the solid state reaction system Li2CO3 -Fe2O3 in the x Li range 0.10±0.50. A detailed analysis of the results shows that the data are in agreement with a reaction model where the carbonate decomposition is regulated by the formation of both LiFeO2 and LiFe5O8 , and the relative amount of the two phases depends on the initial composition. The DSC evidence offers the possibility to directly quantify the LiFe5Ox phase. Furthermore it allows one to obtain the enthalpies of formation of both LiFeO2 and LiFe5O8 .
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, Tao, Divakar Mantha i Ramana G. Reddy. "The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System". High Temperature Materials and Processes 36, nr 3 (1.03.2017): 257–65. http://dx.doi.org/10.1515/htmp-2015-0202.

Pełny tekst źródła
Streszczenie:
AbstractIn this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.
Style APA, Harvard, Vancouver, ISO itp.
3

Smolentsev, A. I., A. B. Meshalkin, N. V. Podberezskaya i A. B. Kaplun. "Refinement of LiFe5O8 crystal structure". Journal of Structural Chemistry 49, nr 5 (wrzesień 2008): 953–56. http://dx.doi.org/10.1007/s10947-008-0163-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Teixeira, Silvia Soreto, Manuel P. F. Graça, José Lucas, Manuel Almeida Valente, Paula I. P. Soares, Maria Carmo Lança, Tânia Vieira i in. "Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine". Nanomaterials 11, nr 1 (14.01.2021): 193. http://dx.doi.org/10.3390/nano11010193.

Pełny tekst źródła
Streszczenie:
The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε′ (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.
Style APA, Harvard, Vancouver, ISO itp.
5

Kim, Su-Yong, Kwang-Su Kim, Un-Gi Jong, Chung-Jin Kang, Song-Chol Ri i Chol-Jun Yu. "First-principles study on structural, electronic, magnetic and thermodynamic properties of lithium ferrite LiFe5O8". RSC Advances 12, nr 25 (2022): 15973–79. http://dx.doi.org/10.1039/d2ra01656g.

Pełny tekst źródła
Streszczenie:
We systematically investigate the material properties of lithium ferrite LiFe5O8 – structural, magnetic, electronic, lattice vibrational properties and thermodynamic stability – using density functional theory calculations.
Style APA, Harvard, Vancouver, ISO itp.
6

Sarah, P., i S. V. Suryanarayana. "Magnetostriction in composites of LiFe5O8–BaTiO3". Journal of Magnetism and Magnetic Materials 260, nr 1-2 (marzec 2003): 211–14. http://dx.doi.org/10.1016/s0304-8853(02)01325-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

de Picciotto, L. A., i MM Thackeray. "Lithium insertion into the spinel LiFe5O8". Materials Research Bulletin 21, nr 5 (maj 1986): 583–92. http://dx.doi.org/10.1016/0025-5408(86)90113-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Yang, Hua, Fengqing Wu, Lizhu Song, Muyu Zhao, Jianping Wang i Helie Luo. "Magnetic properties of nanocrystalline LiFe5O8 particles". Journal of Magnetism and Magnetic Materials 134, nr 1 (maj 1994): 134–36. http://dx.doi.org/10.1016/0304-8853(94)90084-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yang, Hua, Lizhu Song, Fengqing Wu, Zichen Wang, Jianping Wang i Helie Luo. "Preparation and magnetic properties of nanocrystalline LiFe5O8". Journal of Materials Science Letters 13, nr 4 (1994): 256–57. http://dx.doi.org/10.1007/bf00571768.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wu, Hong, Huifeng Li, Genban Sun, Shulan Ma i Xiaojing Yang. "Synthesis, characterization and electromagnetic performance of nanocomposites of graphene with α-LiFeO2 and β-LiFe5O8". Journal of Materials Chemistry C 3, nr 21 (2015): 5457–66. http://dx.doi.org/10.1039/c5tc00778j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Dai, Yong-Ming, Ya-Fen Wang i Chiing-Chang Chen. "Synthesis and characterization of magnetic LiFe5O8-LiFeO2 as a solid basic catalyst for biodiesel production". Catalysis Communications 106 (marzec 2018): 20–24. http://dx.doi.org/10.1016/j.catcom.2017.12.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Oda, Kiichi, i Tetsuo Yoshio. "Preparation of LiFe5O8 by the sol—gel method". Journal of Materials Science Letters 5, nr 5 (maj 1986): 545–48. http://dx.doi.org/10.1007/bf01728686.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Chen, C. J., M. Greenblatt i J. V. Waszczak. "Lithium insertion compounds of LiFe5O8, Li2FeMn3O8, and Li2ZnMn3O8". Journal of Solid State Chemistry 64, nr 3 (październik 1986): 240–48. http://dx.doi.org/10.1016/0022-4596(86)90068-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kim, Seong J., Zhien C. Chen i Anil V. Virkar. "Phase Transformation Kinetics in the Doped System LiAl5O8-LiFe5O8". Journal of the American Ceramic Society 71, nr 10 (październik 1988): C428—C432. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07517.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mohapatra, Prajna P., i Pamu Dobbidi. "Magnetic and broadband dielectric studies of calcium-substituted LiFe5O8". Journal of Magnetism and Magnetic Materials 500 (kwiecień 2020): 166354. http://dx.doi.org/10.1016/j.jmmm.2019.166354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Lin, Ying, Jingjing Dong, Jingjing Dai, Jingping Wang, Haibo Yang i Hanwen Zong. "Facile Synthesis of Flowerlike LiFe5O8 Microspheres for Electrochemical Supercapacitors". Inorganic Chemistry 56, nr 24 (grudzień 2017): 14960–67. http://dx.doi.org/10.1021/acs.inorgchem.7b02257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Chireh, Mahshid, Mahmoud Naseri i Saeedeh Ghiasvand. "Enhanced photocatalytic and antibacterial activities of RGO/LiFe5O8 nanocomposites". Journal of Photochemistry and Photobiology A: Chemistry 385 (grudzień 2019): 112063. http://dx.doi.org/10.1016/j.jphotochem.2019.112063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Rodriguez, J. M. Fernandez, J. Morales, J. Navas i J. L. Tidaro. "TG and DSC studies of lithium insertion in LiFe5O8". Thermochimica Acta 133 (październik 1988): 203–7. http://dx.doi.org/10.1016/0040-6031(88)87158-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Li, Hua, Xin Wang, Pengxia Zhou, Hua Wu, Chonggui Zhong, Zhengchao Dong i Junming Liu. "Strain-tuned optical property in magnetoelectric LiFe5O8 thin film". Journal of Alloys and Compounds 821 (kwiecień 2020): 153199. http://dx.doi.org/10.1016/j.jallcom.2019.153199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Yang, Hua, Dejun Wang, Zichen Wang, Muyu Zhao, Tiejun Li i Li Wang. "A study of the photovoltage properties of nanocrystalline LiFe5O8". Materials Chemistry and Physics 48, nr 3 (maj 1997): 212–15. http://dx.doi.org/10.1016/s0254-0584(96)01887-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Sarah, P., T. Bhimasankaram, G. S. Kumar i S. Suryanarayana. "Dielectric Properties of Diphasic Composites of BaTiO3 and LiFe5O8". Crystal Research and Technology 26, nr 8 (1991): 1085–90. http://dx.doi.org/10.1002/crat.2170260823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Ibrahim, Ahmed Hassan, i Yehia Abbas. "The effect of Tin additionon on Structural and magnetic properties of the stannoferrite Li0.5+0.5XFe2.5-1.5XSnXO4". JOURNAL OF ADVANCES IN PHYSICS 12, nr 3 (30.10.2016): 4307–21. http://dx.doi.org/10.24297/jap.v12i3.9.

Pełny tekst źródła
Streszczenie:
The physical properties of ferrites are verysensitive to microstructure, which in turn critically dependson the manufacturing process.Nanocrystalline Lithium Stannoferrite system Li0.5+0.5XFe2.5-1.5XSnXO4,X= (0, 0.2, 0.4, 0.6, 0.8 and 1.0) fine particles were successfully prepared by double sintering ceramic technique at pre-sintering temperature of 500oC for 3 h andthepre-sintered material was crushed and sintered finally in air at 1000oC.The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction (XRD) and the Rietveld method.The refinement results showed that the nanocrystalline ferrite has a two phases of ordered and disordered phases for polymorphous lithium Stannoferrite.The particle size of as obtained samples were found to be ~20 nm through TEM that increases up to ~ 85 nmand isdependent on the annealing temperature. TEM micrograph reveals that the grains of sample are spherical in shape. (TEM) analysis confirmed the X-ray results.The particle size of stannic substituted lithium ferrite fine particle obtained from the XRD using Scherrer equation.Magneticmeasurements obtained from lake shore’s vibrating sample magnetometer (VSM), saturation magnetization ofordered LiFe5O8 was found to be (57.829 emu/g) which was lower than disordered LiFe5O8(62.848 emu/g).Theinterplay between superexchange interactions of Fe3+ ions at A and B sublattices gives rise to ferrimagnetic ordering of magnetic moments,with a high Curie-Weiss temperature (TCW ~ 900 K).
Style APA, Harvard, Vancouver, ISO itp.
23

Singhal, Sonal, i Kailash Chandra. "Cation Distribution in Lithium Ferrite (LiFe5O8) Prepared via Aerosol Route". Journal of Electromagnetic Analysis and Applications 02, nr 01 (2010): 51–55. http://dx.doi.org/10.4236/jemaa.2010.21008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Li, Bin, Yi Xie, Huilan Su, Yitai Qian i Xianming Liu. "Synthesis of the nanocrystalline α-LiFe5O8 in a solvothermal process". Solid State Ionics 120, nr 1-4 (maj 1999): 251–54. http://dx.doi.org/10.1016/s0167-2738(98)00556-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kinoshita, Yuto, Noriaki Kida, Masato Sotome, Tatsuya Miyamoto, Yusuke Iguchi, Yoshinori Onose i Hiroshi Okamoto. "Terahertz Radiation by Subpicosecond Magnetization Modulation in the Ferrimagnet LiFe5O8". ACS Photonics 3, nr 7 (8.06.2016): 1170–75. http://dx.doi.org/10.1021/acsphotonics.6b00272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ernst, F. O., H. K. Kammler, A. Roessler, S. E. Pratsinis, W. J. Stark, J. Ufheil i P. Novák. "Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8". Materials Chemistry and Physics 101, nr 2-3 (luty 2007): 372–78. http://dx.doi.org/10.1016/j.matchemphys.2006.06.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Rezlescu, N., L. Rezlescu, M. L. Craus i E. Rezlescu. "LiFe5O8 and BaFe12O19 Fine Particles Crystallised in a Glassy Matrix". Crystal Research and Technology 34, nr 7 (sierpień 1999): 829–36. http://dx.doi.org/10.1002/(sici)1521-4079(199908)34:7<829::aid-crat829>3.0.co;2-g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sohn, R. S. T. M., A. A. M. Macêdo, M. M. Costa, S. E. Mazzetto i A. S. B. Sombra. "Studies of the structural and electrical properties of lithium ferrite (LiFe5O8)". Physica Scripta 82, nr 5 (12.10.2010): 055702. http://dx.doi.org/10.1088/0031-8949/82/05/055702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Yang, Jiao, Jianfei Lei, Kai Du, Xudong Zheng i Xiujuan Jin. "The microwave magnetism of epitaxy LiFe5O8 thin film modulated by thickness". Current Applied Physics 20, nr 4 (kwiecień 2020): 589–92. http://dx.doi.org/10.1016/j.cap.2020.02.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Dong, Jingjing, Ying Lin, Hanwen Zong i Haibo Yang. "Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors". Applied Surface Science 470 (marzec 2019): 1043–52. http://dx.doi.org/10.1016/j.apsusc.2018.11.204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Gridnev, V. N., B. B. Krichevtsov, V. V. Pavlov i R. V. Pisarev. "Magnetization-odd nonreciprocal reflection of light from the magnetoelectric—ferromagnet LiFe5O8". Journal of Experimental and Theoretical Physics Letters 65, nr 1 (styczeń 1997): 68–73. http://dx.doi.org/10.1134/1.567327.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Marin, S. J., M. O'Keeffe i D. E. Partin. "Structures and Crystal Chemistry of Ordered Spinels: LiFe5O8, LiZnNbO4, and Zn2TiO4". Journal of Solid State Chemistry 113, nr 2 (grudzień 1994): 413–19. http://dx.doi.org/10.1006/jssc.1994.1389.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Chireh, Mahshid, i Mahmoud Naseri. "Effect of calcination temperature on the physical properties of LiFe5O8 nanostructures". Advanced Powder Technology 30, nr 5 (maj 2019): 952–60. http://dx.doi.org/10.1016/j.apt.2019.02.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wu, Lixiang, Fu-Shen Zhang, Zhi-Yuan Zhang i Cong-Cong Zhang. "An environmentally friendly process for selective recovery of lithium and simultaneous synthesis of LiFe5O8 from spent LiFePO4 battery by mechanochemical". Journal of Cleaner Production 396 (kwiecień 2023): 136504. http://dx.doi.org/10.1016/j.jclepro.2023.136504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Mohapatra, Prajna P., i Pamu Dobbidi. "Effect of carbon reinforcement on the EMI shielding response of LiFe5O8 ceramics". Materials Characterization 189 (lipiec 2022): 111985. http://dx.doi.org/10.1016/j.matchar.2022.111985.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Udhayakumar, S., G. Jagadish Kumar, E. Senthil Kumar, M. Navaneethan i K. Kamala Bharathi. "Temperature and frequency dependent dielectric and conductivity properties of Sr doped LiFe5O8". Materials Letters 300 (październik 2021): 130171. http://dx.doi.org/10.1016/j.matlet.2021.130171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ahniyaz, A. "Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling". Solid State Ionics 151, nr 1-4 (listopad 2002): 419–23. http://dx.doi.org/10.1016/s0167-2738(02)00548-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

An, Sung Yong, In-Bo Shim i Chul Sung Kim. "Synthesis and magnetic properties of LiFe5O8 powders by a sol–gel process". Journal of Magnetism and Magnetic Materials 290-291 (kwiecień 2005): 1551–54. http://dx.doi.org/10.1016/j.jmmm.2004.11.244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wolska, E., P. Piszora, W. Nowicki i J. Darul. "Vibrational spectra of lithium ferrites: infrared spectroscopic studies of Mn-substituted LiFe5O8". International Journal of Inorganic Materials 3, nr 6 (wrzesień 2001): 503–7. http://dx.doi.org/10.1016/s1466-6049(01)00069-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Liu, Kun, Ruyi Zhang, Lu Lu, Shaobo Mi, Ming Liu, Hong Wang, Shengqiang Wu i Chunlin Jia. "Atomic-scale investigation of spinel LiFe5O8 thin films on SrTiO3 (001) substrates". Journal of Materials Science & Technology 40 (marzec 2020): 31–38. http://dx.doi.org/10.1016/j.jmst.2019.08.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Yang, Hua, Ziehen Wang, Muyu Zhao, Jianping Wang, Dehua Han, Helie Luo i Li Wang. "A study of the magnetic properties of nanocrystalline LiFe5O8 and Li0.5Fe2.3Cr0.2O4 particles". Materials Chemistry and Physics 48, nr 1 (marzec 1997): 60–63. http://dx.doi.org/10.1016/s0254-0584(97)80078-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

de Morais, J. E. V., A. J. N. de Castro, R. G. M. Oliveira, F. F. do Carmo, A. J. M. Sales, J. C. Sales, M. A. S. Silva i in. "Magneto Tuning of a Ferrite Dielectric Resonator Antenna Based on LiFe5O8 Matrix". Journal of Electronic Materials 47, nr 7 (6.04.2018): 3829–35. http://dx.doi.org/10.1007/s11664-018-6255-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Zhu, Dongdong, Fengyin Zhou, Yongsong Ma, Yu Xiong, Xiangyun Li, Wei Li i DiHua Wang. "An economic, self-supporting, robust and durable LiFe5O8 anode for sulfamethoxazole degradation". Chemosphere 316 (marzec 2023): 137810. http://dx.doi.org/10.1016/j.chemosphere.2023.137810.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Loukya, B., D. S. Negi, R. Sahu, N. Pachauri, A. Gupta i R. Datta. "Structural characterization of epitaxial LiFe5O8 thin films grown by chemical vapor deposition". Journal of Alloys and Compounds 668 (maj 2016): 187–93. http://dx.doi.org/10.1016/j.jallcom.2016.01.217.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Hu, Youzuo. "α-LiFe5O8: A promising iron-based anode material for lithium-ion batteries". Materials Science and Engineering: B 297 (listopad 2023): 116792. http://dx.doi.org/10.1016/j.mseb.2023.116792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Li, Jing, Di Zhou, Pengjian Wang, Wenfeng Liu i Jinzhan Su. "Raspberry-like LiFe5O8 nanoparticles embedded on MoS2 microflowers with excellent microwave absorption performance". Journal of Materials Chemistry A 8, nr 39 (2020): 20337–45. http://dx.doi.org/10.1039/d0ta07483g.

Pełny tekst źródła
Streszczenie:
Herein, novel nanostructure composites of LiFe5O8/MoS2 have been successfully prepared by a two-step hydrothermal method with excellent microwave absorption performance, in which raspberry-like LiFe5O8 nanoparticles embedded three-dimensional MoS2 microflowers.
Style APA, Harvard, Vancouver, ISO itp.
47

Bonsdorf, G., H. Langbein i K. Knese. "Investigations into phase formation of LiFe5o8 from decomposed freeze-dried Li-Fe-formates". Materials Research Bulletin 30, nr 2 (luty 1995): 175–81. http://dx.doi.org/10.1016/0025-5408(94)00119-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Liu, Run, Linlin Pan, Silu Peng, Lili Qin, Jian Bi, Jiangtao Wu, Hua Wu i Zuo-Guang Ye. "The magnetoelectric effect in a cubic ferrimagnetic spinel LiFe5O8 with high coupling temperature". Journal of Materials Chemistry C 7, nr 7 (2019): 1999–2004. http://dx.doi.org/10.1039/c8tc05615c.

Pełny tekst źródła
Streszczenie:
We report an effective magnetoelectric (ME) coupling phenomenon in cubic ferrimagnetic spinel LiFe5O8, with the command of its polarization by an applied magnetic field. This material exhibits the highest ME coupling temperature among the magnetoelectric spinel and related materials so far reported.
Style APA, Harvard, Vancouver, ISO itp.
49

Li, Jing, i Di Zhou. "Influence of Ag doping on the dielectric and magnetic properties of LiFe5O8 ceramics". Journal of Alloys and Compounds 785 (maj 2019): 13–18. http://dx.doi.org/10.1016/j.jallcom.2019.01.148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Sousa, Osmar M., Raiane S. Araujo i Sabrina M. Freitas. "Calculation of the electronic and optical properties of LiFe5O8: An ab initio study". Computational and Theoretical Chemistry 1159 (lipiec 2019): 27–30. http://dx.doi.org/10.1016/j.comptc.2019.05.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii