Gotowa bibliografia na temat „Lieb-Robinson bound”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Lieb-Robinson bound”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Lieb-Robinson bound"
Matsuta, Takuro, Tohru Koma i Shu Nakamura. "Improving the Lieb–Robinson Bound for Long-Range Interactions". Annales Henri Poincaré 18, nr 2 (20.10.2016): 519–28. http://dx.doi.org/10.1007/s00023-016-0526-1.
Pełny tekst źródłaWoods, M. P., i M. B. Plenio. "Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach". Journal of Mathematical Physics 57, nr 2 (luty 2016): 022105. http://dx.doi.org/10.1063/1.4940436.
Pełny tekst źródłaMahoney, Brendan J., i Craig S. Lent. "The Value of the Early-Time Lieb-Robinson Correlation Function for Qubit Arrays". Symmetry 14, nr 11 (26.10.2022): 2253. http://dx.doi.org/10.3390/sym14112253.
Pełny tekst źródłaStrasberg, Philipp, Kavan Modi i Michalis Skotiniotis. "How long does it take to implement a projective measurement?" European Journal of Physics 43, nr 3 (28.03.2022): 035404. http://dx.doi.org/10.1088/1361-6404/ac5a7a.
Pełny tekst źródłaMoosavian, Ali Hamed, Seyed Sajad Kahani i Salman Beigi. "Limits of Short-Time Evolution of Local Hamiltonians". Quantum 6 (27.06.2022): 744. http://dx.doi.org/10.22331/q-2022-06-27-744.
Pełny tekst źródłaVershynina, Anna, i Elliott Lieb. "Lieb-Robinson bounds". Scholarpedia 8, nr 9 (2013): 31267. http://dx.doi.org/10.4249/scholarpedia.31267.
Pełny tekst źródłaDoyon, Benjamin. "Hydrodynamic Projections and the Emergence of Linearised Euler Equations in One-Dimensional Isolated Systems". Communications in Mathematical Physics 391, nr 1 (27.01.2022): 293–356. http://dx.doi.org/10.1007/s00220-022-04310-3.
Pełny tekst źródłaIslambekov, Umar, Robert Sims i Gerald Teschl. "Lieb–Robinson Bounds for the Toda Lattice". Journal of Statistical Physics 148, nr 3 (sierpień 2012): 440–79. http://dx.doi.org/10.1007/s10955-012-0554-2.
Pełny tekst źródłaNACHTERGAELE, BRUNO, BENJAMIN SCHLEIN, ROBERT SIMS, SHANNON STARR i VALENTIN ZAGREBNOV. "ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS". Reviews in Mathematical Physics 22, nr 02 (marzec 2010): 207–31. http://dx.doi.org/10.1142/s0129055x1000393x.
Pełny tekst źródłaNachtergaele, Bruno, i Robert Sims. "Lieb-Robinson Bounds and the Exponential Clustering Theorem". Communications in Mathematical Physics 265, nr 1 (22.03.2006): 119–30. http://dx.doi.org/10.1007/s00220-006-1556-1.
Pełny tekst źródłaRozprawy doktorskie na temat "Lieb-Robinson bound"
Islambekov, Umar. "Lieb-Robinson Bounds for the Toda Lattice". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/294026.
Pełny tekst źródłaBraida, Arthur. "Analog Quantum Computing for NP-Hard Combinatorial Graph Problems". Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1017.
Pełny tekst źródłaThe main objective of this thesis is to provide theoretical insight into the computational complexity of continuous-time quantum computing (QA and AQC), from understanding the physical phenomenon (AC) that leads to AQC failure to proving short constant-time QA efficiency. To achieve this goal, we use different analytical tools borrowed from theoretical physics like perturbative analysis of quantum systems and the Lieb-Robinson bound on the velocity of correlation in quantum systems. Graph manipulation and spectral graph theory are necessary to derive results on a specific class of graph. We also introduced a new parametrized version of the standard QA to tighten the analysis. First, we want to obtain a mathematical definition of an AC to be easier to grasp when studying a specific class of graph on which we want to solve the Maximum Cut problem. We support our new definition with a proven theorem that links it to exponentially small minimum gap and numerical evidence is brought to justify its more general nature compared to the previous one. With a perturbative analysis, we manage to show that on bipartite graphs, exponentially closing gap can arise if the graph is irregular enough. Our new definition of AC allows us to question the efficiency of AQC to solve it despite the exponentially long runtime the adiabatic theorem imposes to guarantee the optimal solution. The second axis is dedicated to the performance of QA at short constant times. Even though QA is inherently non-local, the LR bound allows us to approximate it with a local evolution. A first approach is used to develop the method and to show the non-triviality of the result, i.e. above random guess. Then we define a notion of local analysis by expressing the approximation ratio with only knowledge of the local structure. A tight and adaptive LR bound is developed allowing us to find a numerical value outperforming quantum and classical (strictly) local algorithms. All this research work has been pursued between Eviden QuantumLab team and the Graphes, Algorithmes et Modèles de Calcul (GAMoC) team at the Laboratoire d'Informatique Fondamentale d'Orléans (LIFO). The numerical work has been implemented using Julia programming Language as well as Python with the QAPTIVA software of Eviden to efficiently simulate the Schrödinger equation
Książki na temat "Lieb-Robinson bound"
Bru, J. B., i W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45784-0.
Pełny tekst źródłaLieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.
Znajdź pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Lieb-Robinson bound"
Naaijkens, Pieter. "Lieb-Robinson Bounds". W Quantum Spin Systems on Infinite Lattices, 109–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_4.
Pełny tekst źródłaNaaijkens, Pieter. "Applications of Lieb-Robinson Bounds". W Quantum Spin Systems on Infinite Lattices, 151–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_6.
Pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. "Lieb–Robinson Bounds for Multi–commutators". W Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 31–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_4.
Pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. "Lieb–Robinson Bounds for Non-autonomous Dynamics". W Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 63–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_5.
Pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. "Introduction". W Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_1.
Pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. "Algebraic Quantum Mechanics". W Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 5–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_2.
Pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. "Algebraic Setting for Interacting Fermions on the Lattice". W Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 17–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_3.
Pełny tekst źródłaBru, J. B., i W. de Siqueira Pedra. "Applications to Conductivity Measures". W Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 89–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_6.
Pełny tekst źródłaKliesch, Martin, Christian Gogolin i Jens Eisert. "Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems". W Many-Electron Approaches in Physics, Chemistry and Mathematics, 301–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06379-9_17.
Pełny tekst źródłaCheneau, Marc. "Experimental tests of Lieb–Robinson bounds". W The Physics and Mathematics of Elliott Lieb, 225–45. EMS Press, 2022. http://dx.doi.org/10.4171/90-1/10.
Pełny tekst źródłaStreszczenia konferencji na temat "Lieb-Robinson bound"
NACHTERGAELE, BRUNO. "LIEB–ROBINSON BOUNDS AND THE EXISTENCE OF INFINITE SYSTEM DYNAMICS". W XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0028.
Pełny tekst źródłaSIMS, ROBERT. "LIEB-ROBINSON BOUNDS AND QUASI-LOCALITY FOR THE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS". W Proceedings of the QMath11 Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350365_0007.
Pełny tekst źródła