Artykuły w czasopismach na temat „LI2MN03”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „LI2MN03”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shirazimoghadam, Yasaman, Abdel El kharbachi, Yang Hu, Thomas Diemant, Georginan Melinte i Maximilian Fichtner. "(Digital Presentation) Recent Development of the Cobalt Free and Lithium Rich Manganese Based Disordered Rocksalt Oxyfluorides As a Cathode Material for Lithium Ion Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 365. http://dx.doi.org/10.1149/ma2022-012365mtgabs.
Pełny tekst źródłaMarinova, Delyana, Mariya Kalapsazova, Zlatina Zlatanova, Liuda Mereacre, Ekaterina Zhecheva i Radostina Stoyanova. "Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures". Materials 16, nr 13 (3.07.2023): 4798. http://dx.doi.org/10.3390/ma16134798.
Pełny tekst źródłaSusai, Francis Amalraj, Michael Talianker, Jing Liu, Rosy, Tanmoy Paul, Yehudit Grinblat, Evan Erickson i in. "Electrochemical Activation of Li2MnO3 Electrodes at 0 °C and Its Impact on the Subsequent Performance at Higher Temperatures". Materials 13, nr 19 (1.10.2020): 4388. http://dx.doi.org/10.3390/ma13194388.
Pełny tekst źródłaLiu, Guang, Hui Xu, Zhongheng Wang i Sa Li. "Operando electrochemical fluorination to achieve Mn4+/Mn2+ double redox in a Li2MnO3-like cathode". Chemical Communications 58, nr 20 (2022): 3326–29. http://dx.doi.org/10.1039/d1cc06865b.
Pełny tekst źródłaPulido, Ruth, Nelson Naveas, Raúl J. Martin-Palma, Fernando Agulló-Rueda, Victor R. Ferró, Jacobo Hernández-Montelongo, Gonzalo Recio-Sánchez, Ivan Brito i Miguel Manso-Silván. "Phonon Structure, Infra-Red and Raman Spectra of Li2MnO3 by First-Principles Calculations". Materials 15, nr 18 (8.09.2022): 6237. http://dx.doi.org/10.3390/ma15186237.
Pełny tekst źródłaKuganathan, Navaratnarajah, Efstratia Sgourou, Yerassimos Panayiotatos i Alexander Chroneos. "Defect Process, Dopant Behaviour and Li Ion Mobility in the Li2MnO3 Cathode Material". Energies 12, nr 7 (7.04.2019): 1329. http://dx.doi.org/10.3390/en12071329.
Pełny tekst źródłaChennakrishnan, Sandhiya, Venkatachalam Thangamuthu, Akshaya Subramaniyam, Viknesh Venkatachalam, Manikandan Venugopal i Raju Marudhan. "Synthesis and characterization of Li2MnO3 nanoparticles using sol-gel technique for lithium ion battery". Materials Science-Poland 38, nr 2 (1.06.2020): 312–19. http://dx.doi.org/10.2478/msp-2020-0026.
Pełny tekst źródłaMogashoa, Tshidi, Raesibe Sylvia Ledwaba i Phuti Esrom Ngoepe. "Analysing the Implications of Charging on Nanostructured Li2MnO3 Cathode Materials for Lithium-Ion Battery Performance". Materials 15, nr 16 (18.08.2022): 5687. http://dx.doi.org/10.3390/ma15165687.
Pełny tekst źródłaKadhum, Samah Abd, i Zainab Raheem Muslim. "Synthesis and Characterization of Li2MnO3 Using Sol-gel Technique". NeuroQuantology 20, nr 5 (18.05.2022): 808–12. http://dx.doi.org/10.14704/nq.2022.20.5.nq22238.
Pełny tekst źródłaZhuravlev, Victor D., Sergei I. Shchekoldin, Stanislav E. Andrjushin, Elena A. Sherstobitova, Ksenia V. Nefedova i Olga V. Bushkova. "Electrochemical Characteristics and Phase Composition of LithiumManganese Oxide Spinel with Excess Lithium Li1+xMn2O4". Electrochemical Energetics 20, nr 3 (2020): 157–70. http://dx.doi.org/10.18500/1608-4039-2020-20-3-157-170.
Pełny tekst źródłaRen, Xiao Dong, Jian Jun Liu i Wen Qing Zhang. "Strain Effect on the Electrochemical Properties of Li2MnO3 Cathode Material: A First Principles Calculation". Key Engineering Materials 519 (lipiec 2012): 147–51. http://dx.doi.org/10.4028/www.scientific.net/kem.519.147.
Pełny tekst źródłaVu, Ngoc Hung, Van-Duong Dao, Hong Ha Thi Vu, Nguyen Van Noi, Dinh Trinh Tran, Minh Ngoc Ha i Thanh-Dong Pham. "Hydrothermal Synthesis of Li2MnO3-Stabilized LiMnO2 as a Cathode Material for Li-Ion Battery". Journal of Nanomaterials 2021 (11.07.2021): 1–6. http://dx.doi.org/10.1155/2021/9312358.
Pełny tekst źródłaGuerrini, Niccoló, Liyu Jin, Juan G. Lozano, Kun Luo, Adam Sobkowiak, Kazuki Tsuruta, Felix Massel, Laurent-Claudius Duda, Matthew R. Roberts i Peter G. Bruce. "Charging Mechanism of Li2MnO3". Chemistry of Materials 32, nr 9 (14.04.2020): 3733–40. http://dx.doi.org/10.1021/acs.chemmater.9b04459.
Pełny tekst źródłaRiou, A., A. Lecerf, Y. Gerault i Y. Cudennec. "Etude structurale de Li2MnO3". Materials Research Bulletin 27, nr 3 (marzec 1992): 269–75. http://dx.doi.org/10.1016/0025-5408(92)90055-5.
Pełny tekst źródłaWang, Lian-Bang, He-Shan Hu, Wei Lin, Qing-Hong Xu, Jia-Dong Gong, Wen-Kui Chai i Chao-Qi Shen. "Electrochemically Inert Li2MnO3: The Key to Improving the Cycling Stability of Li-Rich Manganese Oxide Used in Lithium-Ion Batteries". Materials 14, nr 16 (23.08.2021): 4751. http://dx.doi.org/10.3390/ma14164751.
Pełny tekst źródłaZhou, Yun Long, Zhi Biao Hu, Chen Hao Zhao, Li Yan i Kai Yu Liu. "Facile Preparation and Electrochemical Performances of LiMn2O4/Li1.2(Mn0.56Ni0.16Co0.08)O2 Blend Cathode Materials for Lithium Ion Battery". Materials Science Forum 852 (kwiecień 2016): 805–10. http://dx.doi.org/10.4028/www.scientific.net/msf.852.805.
Pełny tekst źródłaYu, Zhiyong, Jishen Hao, Wenji Li i Hanxing Liu. "Enhanced Electrochemical Performances of Cobalt-Doped Li2MoO3 Cathode Materials". Materials 12, nr 6 (13.03.2019): 843. http://dx.doi.org/10.3390/ma12060843.
Pełny tekst źródłaAbulikemu, Aierxiding, Shenghan Gao, Toshiyuki Matsunaga, Hiroshi Takatsu, Cédric Tassel, Hiroshi Kageyama, Takashi Saito i in. "Partial cation disorder in Li2MnO3 obtained by high-pressure synthesis". Applied Physics Letters 120, nr 18 (2.05.2022): 182404. http://dx.doi.org/10.1063/5.0088023.
Pełny tekst źródłaXiao, Ruijuan, Hong Li i Liquan Chen. "Density Functional Investigation on Li2MnO3". Chemistry of Materials 24, nr 21 (listopad 2012): 4242–51. http://dx.doi.org/10.1021/cm3027219.
Pełny tekst źródłaNazario-Naveda, Renny, Segundo Rojas-Flores, Luisa Juárez-Cortijo, Moises Gallozzo-Cardenas, Félix N. Díaz, Luis Angelats-Silva i Santiago M. Benites. "Effect of x on the Electrochemical Performance of Two-Layered Cathode Materials xLi2MnO3–(1−x)LiNi0.5Mn0.5O2". Batteries 8, nr 7 (29.06.2022): 63. http://dx.doi.org/10.3390/batteries8070063.
Pełny tekst źródłaRobertson, Alastair D., i Peter G. Bruce. "Mechanism of Electrochemical Activity in Li2MnO3". Chemistry of Materials 15, nr 10 (maj 2003): 1984–92. http://dx.doi.org/10.1021/cm030047u.
Pełny tekst źródłaStrobel, Pierre, i Bernadette Lambert-Andron. "Crystallographic and magnetic structure of Li2MnO3". Journal of Solid State Chemistry 75, nr 1 (lipiec 1988): 90–98. http://dx.doi.org/10.1016/0022-4596(88)90305-2.
Pełny tekst źródłaJiang, Jin He. "Synthesis of Spinel Li2MnO3 and its Ion-Exchange Property for Li+". Advanced Materials Research 554-556 (lipiec 2012): 860–63. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.860.
Pełny tekst źródłaHibble, S. J., I. D. Fawcett i A. C. Hannon. "Structure of Two Disordered Molybdates, Li2MoIVO3 and Li4Mo3 IVO8, from Total Neutron Scattering". Acta Crystallographica Section B Structural Science 53, nr 4 (1.08.1997): 604–12. http://dx.doi.org/10.1107/s0108768197003844.
Pełny tekst źródłaQi, Yue, Christine James, Tridip Das, Jason D. Nicholas, Leah Nation i Brian W. Sheldon. "(Invited) Computing the Anisotropic Chemical Strain in Non-Stoichiometric Oxides for Solid Oxide Fuel Cell and Li-Ion Battery Applications". ECS Meeting Abstracts MA2018-01, nr 32 (13.04.2018): 1940. http://dx.doi.org/10.1149/ma2018-01/32/1940.
Pełny tekst źródłaKUMADA, Nobuhiro, Suguru MURAMATSU, Nobukazu KINOMURA i Fumio MUTO. "Deintercalation of Li2MoO3". Journal of the Ceramic Society of Japan 96, nr 1120 (1988): 1181–85. http://dx.doi.org/10.2109/jcersj.96.1181.
Pełny tekst źródłaLim, Jinsub, Jieh Moon, Jihyeon Gim, Sungjin Kim, Kangkun Kim, Jinju Song, Jungwon Kang, Won Bin Im i Jaekook Kim. "Fully activated Li2MnO3 nanoparticles by oxidation reaction". Journal of Materials Chemistry 22, nr 23 (2012): 11772. http://dx.doi.org/10.1039/c2jm30962a.
Pełny tekst źródłaRobertson, Alastair D., i Peter G. Bruce. "The origin of electrochemical activity in Li2MnO3". Chemical Communications, nr 23 (24.10.2002): 2790–91. http://dx.doi.org/10.1039/b207945c.
Pełny tekst źródłaLei, C. H., J. G. Wen, M. Sardela, J. Bareño, I. Petrov, S. H. Kang i D. P. Abraham. "Structural study of Li2MnO3 by electron microscopy". Journal of Materials Science 44, nr 20 (8.08.2009): 5579–87. http://dx.doi.org/10.1007/s10853-009-3784-1.
Pełny tekst źródłaLi, Zhe, Kai Zhu, Yu Hui Wang, Gang Li, Gang Chen, Hong Chen, Ying Jin Wei i Chun Zhong Wang. "Electrochemical Properties of Li-Riched Li[Li0.2Co0.4Mn 0.4]O2 Cathode Material for Lithium Ion Batteries". Advanced Materials Research 347-353 (październik 2011): 3658–61. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3658.
Pełny tekst źródłaWang, Yu Hui, Zhe Li, Kai Zhu, Gang Li, Ying Jin Wei, Gang Chen i Chun Zhong Wang. "Low-Temperature Performance of the Li[Li0.2Co0.4Mn0.4]O2 Cathode Material Studied for Li-Ion Batteries". Advanced Materials Research 347-353 (październik 2011): 3662–65. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3662.
Pełny tekst źródłaTorres-Castro, L., R. S. Katiyar i A. Manivannan. "Structural and Electrochemical Studies of Rhodium Substituted Li2MnO3". ECS Transactions 69, nr 18 (28.12.2015): 23–32. http://dx.doi.org/10.1149/06918.0023ecst.
Pełny tekst źródłaKoyama, Yukinori, Isao Tanaka, Miki Nagao i Ryoji Kanno. "First-principles study on lithium removal from Li2MnO3". Journal of Power Sources 189, nr 1 (kwiecień 2009): 798–801. http://dx.doi.org/10.1016/j.jpowsour.2008.07.073.
Pełny tekst źródłaZhang, Xianke, Shaolong Tang i Youwei Du. "Synthesis and magnetic properties of antiferromagnetic Li2MnO3 nanoribbons". Physics Letters A 375, nr 36 (sierpień 2011): 3196–99. http://dx.doi.org/10.1016/j.physleta.2011.07.008.
Pełny tekst źródłaWang, Z. Q., Y. C. Chen i C. Y. Ouyang. "Polaron states and migration in F-doped Li2MnO3". Physics Letters A 378, nr 32-33 (czerwiec 2014): 2449–52. http://dx.doi.org/10.1016/j.physleta.2014.06.025.
Pełny tekst źródłaRana, Jatinkumar, Joseph K. Papp, Zachary Lebens-Higgins, Mateusz Zuba, Lori A. Kaufman, Anshika Goel, Richard Schmuch i in. "Quantifying the Capacity Contributions during Activation of Li2MnO3". ACS Energy Letters 5, nr 2 (27.01.2020): 634–41. http://dx.doi.org/10.1021/acsenergylett.9b02799.
Pełny tekst źródłaBoulineau, A., L. Croguennec, C. Delmas i F. Weill. "Structure of Li2MnO3 with different degrees of defects". Solid State Ionics 180, nr 40 (29.01.2010): 1652–59. http://dx.doi.org/10.1016/j.ssi.2009.10.020.
Pełny tekst źródłaPhillips, P. J., H. Iddir, R. Benedek, D. P. Abraham i R. F. Klie. "Imaging and Spectroscopy of Pristine and Cycled Li2MnO3". Microscopy and Microanalysis 20, S3 (sierpień 2014): 494–95. http://dx.doi.org/10.1017/s143192761400419x.
Pełny tekst źródłaPark, Sang-Ho, Yuichi Sato, Jae-KooK Kim i Yun-Sung Lee. "Powder property and electrochemical characterization of Li2MnO3 material". Materials Chemistry and Physics 102, nr 2-3 (kwiecień 2007): 225–30. http://dx.doi.org/10.1016/j.matchemphys.2006.12.008.
Pełny tekst źródłaQuesne-Turin, Ambroise, Delphine Flahaut, Germain Salvato Vallverdu, Laurence Croguennec, Joachim Allouche, François Weill, Michel Ménétrier i Isabelle Baraille. "Surface reactivity of Li2MnO3: Structural and morphological impact". Applied Surface Science 542 (marzec 2021): 148514. http://dx.doi.org/10.1016/j.apsusc.2020.148514.
Pełny tekst źródłaRuther, Rose E., Hemant Dixit, Alan M. Pezeshki, Robert L. Sacci, Valentino R. Cooper, Jagjit Nanda i Gabriel M. Veith. "Correlating Local Structure with Electrochemical Activity in Li2MnO3". Journal of Physical Chemistry C 119, nr 32 (31.07.2015): 18022–29. http://dx.doi.org/10.1021/acs.jpcc.5b03900.
Pełny tekst źródłaOzkendir, O. Murat, Messaoud Harfouche, Intikhab Ulfat, Çiğdem Kaya, Gultekin Celik, Sule Ates, Sevda Aktas, Hadi Bavegar i Tugba Colak. "Boron activity in the inactive Li2MnO3 cathode material". Journal of Electron Spectroscopy and Related Phenomena 235 (sierpień 2019): 23–28. http://dx.doi.org/10.1016/j.elspec.2019.06.011.
Pełny tekst źródłaWang, Fangwei, Xiyang Li Li, Lunhua He, Rui Wang Wang, Xiaoqing He, Lin Gu, Hong Li i Liquan Chen. "Atomic structure of Li2-xMnO3studied by neutron diffraction and STEM". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C142. http://dx.doi.org/10.1107/s205327331409857x.
Pełny tekst źródłaJames, Christine, Yan Wu, Brian Sheldon i Yue Qi. "Computational Analysis of Coupled Anisotropic Chemical Expansion in Li2-XMnO3-δ". MRS Advances 1, nr 15 (2016): 1037–42. http://dx.doi.org/10.1557/adv.2016.48.
Pełny tekst źródłaKataoka, R., N. Taguchi, T. Kojima, N. Takeichi i T. Kiyobayashi. "Improving the oxygen redox stability of NaCl-type cation disordered Li2MnO3 in a composite structure of Li2MnO3 and spinel-type LiMn2O4". Journal of Materials Chemistry A 7, nr 10 (2019): 5381–90. http://dx.doi.org/10.1039/c8ta11807h.
Pełny tekst źródłaZhang, Shiwei, Jianchuan Wang, Ting Lei, Xu Li, Yuling Liu, Fangyu Guo, Jun Wang i in. "First-principles study of Mn antisite defect in Li2MnO3". Journal of Physics: Condensed Matter 33, nr 41 (5.08.2021): 415201. http://dx.doi.org/10.1088/1361-648x/ac16f6.
Pełny tekst źródłaArachi, Yoshinori, Kentarou Hinoshita i Yoshiyuki Nakata. "Effect of CuO on the Electrochemical Activity of Li2MnO3". ECS Transactions 41, nr 29 (16.12.2019): 1–7. http://dx.doi.org/10.1149/1.3696677.
Pełny tekst źródłaSingh, Gurpreet, R. Thomas, Arun Kumar i R. S. Katiyar. "Electrochemical Behavior of Cr- Doped Composite Li2MnO3-LiMn0.5Ni0.5O2Cathode Materials". Journal of The Electrochemical Society 159, nr 4 (2012): A410—A420. http://dx.doi.org/10.1149/2.059204jes.
Pełny tekst źródłaTorres-Castro, Loraine, Jifi Shojan, Christian M. Julien, Ashfia Huq, Chetan Dhital, Mariappan Parans Paranthaman, Ram S. Katiyar i Ayyakkannu Manivannan. "Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3". Materials Science and Engineering: B 201 (listopad 2015): 13–22. http://dx.doi.org/10.1016/j.mseb.2015.07.006.
Pełny tekst źródłaKan, Yongchun, Yuan Hu, Jason Croy, Yang Ren, Cheng-Jun Sun, Steve M. Heald, Javier Bareño, Ira Bloom i Zonghai Chen. "Formation of Li2MnO3 investigated by in situ synchrotron probes". Journal of Power Sources 266 (listopad 2014): 341–46. http://dx.doi.org/10.1016/j.jpowsour.2014.05.032.
Pełny tekst źródła