Artykuły w czasopismach na temat „Li-Se Batteries”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Li-Se Batteries”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zeng, Lin-Chao, Wei-Han Li, Yu Jiang i Yan Yu. "Recent progress in Li–S and Li–Se batteries". Rare Metals 36, nr 5 (15.03.2017): 339–64. http://dx.doi.org/10.1007/s12598-017-0891-z.
Pełny tekst źródłaYe, Huan, Ya-Xia Yin, Shuai-Feng Zhang i Yu-Guo Guo. "Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries". Journal of Materials Chemistry A 2, nr 33 (23.05.2014): 13293. http://dx.doi.org/10.1039/c4ta02017k.
Pełny tekst źródłaJin, Jun, Xiaocong Tian, Narasimalu Srikanth, Ling Bing Kong i Kun Zhou. "Advances and challenges of nanostructured electrodes for Li–Se batteries". Journal of Materials Chemistry A 5, nr 21 (2017): 10110–26. http://dx.doi.org/10.1039/c7ta01384a.
Pełny tekst źródłaLiu, Ting, Yan Zhang, Junke Hou, Shiyu Lu, Jian Jiang i Maowen Xu. "High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries". RSC Advances 5, nr 102 (2015): 84038–43. http://dx.doi.org/10.1039/c5ra14979g.
Pełny tekst źródłaUm, Ji Hyun, Aihua Jin, Xin Huang, Jeesoo Seok, Seong Soo Park, Janghyuk Moon, Mihyun Kim i in. "Competitive nucleation and growth behavior in Li–Se batteries". Energy & Environmental Science 15, nr 4 (2022): 1493–502. http://dx.doi.org/10.1039/d1ee03619j.
Pełny tekst źródłaYe, Ruijie, Chih-Long Tsai, Martin Ihrig, Serkan Sevinc, Melanie Rosen, Enkhtsetseg Dashjav, Yoo Jung Sohn, Egbert Figgemeier i Martin Finsterbusch. "Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries". Green Chemistry 22, nr 15 (2020): 4952–61. http://dx.doi.org/10.1039/d0gc01009j.
Pełny tekst źródłaFeng, Nanxiang, Kaixiong Xiang, Li Xiao, Wenhao Chen, Yirong Zhu, Haiyang Liao i Han Chen. "Se/CNTs microspheres as improved performance for cathodes in Li-Se batteries". Journal of Alloys and Compounds 786 (maj 2019): 537–43. http://dx.doi.org/10.1016/j.jallcom.2019.01.348.
Pełny tekst źródłaLee, Suyeong, Jun Lee, Jaekook Kim, Marco Agostini, Shizhao Xiong, Aleksandar Matic i Jang-Yeon Hwang. "Recent Developments and Future Challenges in Designing Rechargeable Potassium-Sulfur and Potassium-Selenium Batteries". Energies 13, nr 11 (1.06.2020): 2791. http://dx.doi.org/10.3390/en13112791.
Pełny tekst źródłaZeng, Lingxing, Xi Chen, Renpin Liu, Liangxu Lin, Cheng Zheng, Lihong Xu, Fenqiang Luo, Qingrong Qian, Qinghua Chen i Mingdeng Wei. "Green synthesis of a Se/HPCF–rGO composite for Li–Se batteries with excellent long-term cycling performance". Journal of Materials Chemistry A 5, nr 44 (2017): 22997–3005. http://dx.doi.org/10.1039/c7ta06884k.
Pełny tekst źródłaJin, Yang, Kai Liu, Jialiang Lang, Xin Jiang, Zhikun Zheng, Qinghe Su, Zeya Huang i in. "High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries". Joule 4, nr 1 (styczeń 2020): 262–74. http://dx.doi.org/10.1016/j.joule.2019.09.003.
Pełny tekst źródłaXia, Yang, Zheng Fang, Chengwei Lu, Zhen Xiao, Xinping He, Yongping Gan, Hui Huang, Guoguang Wang i Wenkui Zhang. "A Facile Pre-Lithiated Strategy towards High-Performance Li2Se-LiTiO2 Composite Cathode for Li-Se Batteries". Nanomaterials 12, nr 5 (28.02.2022): 815. http://dx.doi.org/10.3390/nano12050815.
Pełny tekst źródłaAboonasr Shiraz, Mohammad Hossein, Erwin Rehl, Hossein Kazemian i Jian Liu. "Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating". Nanomaterials 11, nr 8 (31.07.2021): 1976. http://dx.doi.org/10.3390/nano11081976.
Pełny tekst źródłaYan, Rui, Fangchao Liu i Zhengwen Fu. "Revealing the Electrochemistry of All-Solid-State Li-SeS2 Battery via Transmission Electron Microscopy". Inorganics 11, nr 6 (13.06.2023): 257. http://dx.doi.org/10.3390/inorganics11060257.
Pełny tekst źródłaMukkabla, Radha, Sathish Deshagani, Praveen Meduri, Melepurath Deepa i Partha Ghosal. "Selenium/Graphite Platelet Nanofiber Composite for Durable Li–Se Batteries". ACS Energy Letters 2, nr 6 (9.05.2017): 1288–95. http://dx.doi.org/10.1021/acsenergylett.7b00251.
Pełny tekst źródłaYang, Zewen, Kunjie Zhu, Zihao Dong, Dandan Jia i Lifang Jiao. "Stabilization of Li–Se Batteries by Wearing PAN Protective Clothing". ACS Applied Materials & Interfaces 11, nr 43 (3.10.2019): 40069–77. http://dx.doi.org/10.1021/acsami.9b14215.
Pełny tekst źródłaKim, Mihyun, Ji Hyun Um, Aihua Jin i Seung-Ho Yu. "Electrochemical Activation for Improved Cycle Life of Li-Se Batteries". ECS Meeting Abstracts MA2020-02, nr 2 (23.11.2020): 432. http://dx.doi.org/10.1149/ma2020-022432mtgabs.
Pełny tekst źródłaChen, Xi, Lihong Xu, Lingxing Zeng, Yiyi Wang, Shihan Zeng, Hongzhou Li, Xinye Li, Qingrong Qian, Mingdeng Wei i Qinghua Chen. "Synthesis of the Se-HPCF composite via a liquid-solution route and its stable cycling performance in Li–Se batteries". Dalton Transactions 49, nr 41 (2020): 14536–42. http://dx.doi.org/10.1039/d0dt03035j.
Pełny tekst źródłaSun, Fugen, Yahui Li, Zilong Wu, Yu Liu, Hao Tang, Xiaomin Li, Zhihao Yue i Lang Zhou. "In situ reactive coating of metallic and selenophilic Ag2Se on Se/C cathode materials for high performance Li–Se batteries". RSC Advances 8, nr 57 (2018): 32808–13. http://dx.doi.org/10.1039/c8ra06484a.
Pełny tekst źródłaLi, Xiaona, Jianwen Liang, Xia Li, Changhong Wang, Jing Luo, Ruying Li i Xueliang Sun. "High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes". Energy & Environmental Science 11, nr 10 (2018): 2828–32. http://dx.doi.org/10.1039/c8ee01621f.
Pełny tekst źródłaFan, Shan, Yong Zhang, Shu-Hua Li, Tian-Yu Lan i Jian-Li Xu. "Hollow selenium encapsulated into 3D graphene hydrogels for lithium–selenium batteries with high rate performance and cycling stability". RSC Advances 7, nr 34 (2017): 21281–86. http://dx.doi.org/10.1039/c6ra28463a.
Pełny tekst źródłaZhang, Shumin, Feipeng Zhao i Xueliang Andy Sun. "Interface Engineering Via Fluorinated Solid Electrolytes for All-Solid-State Li Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 159. http://dx.doi.org/10.1149/ma2022-012159mtgabs.
Pełny tekst źródłaFan, Qianqian, Baohua Li, Yubing Si i Yongzhu Fu. "Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li–S batteries". Chemical Communications 55, nr 53 (2019): 7655–58. http://dx.doi.org/10.1039/c8cc09565e.
Pełny tekst źródłaGu, Xingxing, i Chao Lai. "One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives". Energy Storage Materials 23 (grudzień 2019): 190–224. http://dx.doi.org/10.1016/j.ensm.2019.05.013.
Pełny tekst źródłaWalker, Brandon, Vesselin Yamakov, Ji Su, Donald Dornbusch, Rocco P. Viggiano, James Wu, Sam-Shajing Sun, John Connell i Yi Lin. "Fabrication and Performance of Li-S/Se Solid State Cathodes with Holey Graphene As a Conductive Scaffold and Binder". ECS Meeting Abstracts MA2022-01, nr 1 (7.07.2022): 93. http://dx.doi.org/10.1149/ma2022-01193mtgabs.
Pełny tekst źródłaMasedi, M. C., i P. E. Ngoepe. "Multi-scale simulations and phase stability prediction of mixed Li2S1-xSex system". Journal of Physics: Conference Series 2298, nr 1 (1.08.2022): 012003. http://dx.doi.org/10.1088/1742-6596/2298/1/012003.
Pełny tekst źródłaFang, Ruyi, Yang Xia, Chu Liang, Xinping He, Hui Huang, Yongping Gan, Jun Zhang, Xinyong Tao i Wenkui Zhang. "Supercritical CO2-assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries". Journal of Materials Chemistry A 6, nr 48 (2018): 24773–82. http://dx.doi.org/10.1039/c8ta09758e.
Pełny tekst źródłaZhao, J., W. Guo i Y. Fu. "Performance enhancement of Li–Se batteries by manipulating redox reactions pathway". Materials Today Energy 17 (wrzesień 2020): 100442. http://dx.doi.org/10.1016/j.mtener.2020.100442.
Pełny tekst źródłaEftekhari, Ali. "The rise of lithium–selenium batteries". Sustainable Energy & Fuels 1, nr 1 (2017): 14–29. http://dx.doi.org/10.1039/c6se00094k.
Pełny tekst źródłaHong, Young Jun, Kwang Chul Roh i Yun Chan Kang. "Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li–Se batteries". Journal of Materials Chemistry A 6, nr 9 (2018): 4152–60. http://dx.doi.org/10.1039/c7ta11112f.
Pełny tekst źródłaXie, Kunchen, Junpeng Sun, Jing Lian, Yongzhu Fu i Wei Guo. "Tuning the electrochemical activity of Li–Se batteries by redox mediator additives". Applied Physics Letters 121, nr 13 (26.09.2022): 133904. http://dx.doi.org/10.1063/5.0117219.
Pełny tekst źródłaAhmadian Hoseini, Amir Hosein, Mohammad Hossein Aboonasr Shiraz, Li Tao, Mohammad Arjmand i Jian Liu. "Synthesizing Microporous Carbon from Soybean and Use It to Develop Cathode Material for High Performance Lithium-Selenium Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 337. http://dx.doi.org/10.1149/ma2022-012337mtgabs.
Pełny tekst źródłaSong, Jian-Ping, Liang Wu, Wen-Da Dong, Chao-Fan Li, Li-Hua Chen, Xin Dai, Chao Li i in. "MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium–selenium batteries". Nanoscale 11, nr 14 (2019): 6970–81. http://dx.doi.org/10.1039/c9nr00924h.
Pełny tekst źródłaHe, Jiarui, Yuanfu Chen, Weiqiang Lv, Kechun Wen, Pingjian Li, Zegao Wang, Wanli Zhang, Wu Qin i Weidong He. "Three-Dimensional Hierarchical Graphene-CNT@Se: A Highly Efficient Freestanding Cathode for Li–Se Batteries". ACS Energy Letters 1, nr 1 (18.04.2016): 16–20. http://dx.doi.org/10.1021/acsenergylett.6b00015.
Pełny tekst źródłaZhang, Fan, Xin Guo, Pan Xiong, Jinqiang Zhang, Jianjun Song, Kang Yan, Xiaochun Gao, Hao Liu i Guoxiu Wang. "Interface Engineering of MXene Composite Separator for High‐Performance Li–Se and Na–Se Batteries". Advanced Energy Materials 10, nr 20 (16.04.2020): 2000446. http://dx.doi.org/10.1002/aenm.202000446.
Pełny tekst źródłaJia, Min, Cuiping Mao, Yubin Niu, Junke Hou, Sangui Liu, Shujuan Bao, Jian Jiang, Maowen Xu i Zhisong Lu. "A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications". RSC Advances 5, nr 116 (2015): 96146–50. http://dx.doi.org/10.1039/c5ra19000b.
Pełny tekst źródłaTang, Shuwei, Chenchen Liu, Wen Sun, Jingyi Zhang, Shulin Bai, Xu Zhang i Shaobin Yang. "Unraveling the superior anchoring of lithium polyselenides to the confinement bilayer C2N: an efficient host material for lithium–selenium batteries". Physical Chemistry Chemical Physics 23, nr 47 (2021): 26981–89. http://dx.doi.org/10.1039/d1cp03218f.
Pełny tekst źródłaCao, Yuqing, Feifei Lei, Yunliang Li, Shilun Qiu, Yan Wang, Wei Zhang i Zongtao Zhang. "A MOF-derived carbon host associated with Fe and Co single atoms for Li–Se batteries". Journal of Materials Chemistry A 9, nr 29 (2021): 16196–207. http://dx.doi.org/10.1039/d1ta04529f.
Pełny tekst źródłaWang, Jun, Jing-Ping Ke, Zhen-Yi Wu, Xiao-Na Zhong, Song-Bai Zheng, Yong-Jun Li i Wen-Hua Zhao. "Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries". Coatings 12, nr 7 (30.06.2022): 931. http://dx.doi.org/10.3390/coatings12070931.
Pełny tekst źródłaLi, Hongyan, Chao Li, Yingying Wang, Ming-Hui Sun, Wenda Dong, Yu Li i Bao-Lian Su. "Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries". Chemical Synthesis 2, nr 2 (2022): 8. http://dx.doi.org/10.20517/cs.2022.04.
Pełny tekst źródłaSingh, Arvinder, i Vibha Kalra. "Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries". Journal of Materials Chemistry A 7, nr 19 (2019): 11613–50. http://dx.doi.org/10.1039/c9ta00327d.
Pełny tekst źródłaChatterjee, Debanjali, Kaustubh Girish Naik, Bairav Sabarish Vishnugopi i Partha P. Mukherjee. "Coupled Effect of Pressure and Temperature on Interface Stability in Solid-State Batteries". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 474. http://dx.doi.org/10.1149/ma2022-024474mtgabs.
Pełny tekst źródłaJayan, Rahul, i Md Mahbubul Islam. "Functionalized MXenes as effective polyselenide immobilizers for lithium–selenium batteries: a density functional theory (DFT) study". Nanoscale 12, nr 26 (2020): 14087–95. http://dx.doi.org/10.1039/d0nr02296a.
Pełny tekst źródłaZhang, Shuai-Feng, Wen-Peng Wang, Sen Xin, Huan Ye, Ya-Xia Yin i Yu-Guo Guo. "Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries". ACS Applied Materials & Interfaces 9, nr 10 (3.03.2017): 8759–65. http://dx.doi.org/10.1021/acsami.6b16708.
Pełny tekst źródłaKim, Soochan, Misuk Cho i Youngkwan Lee. "High-Performance Li-Se Batteries Enabled Via All-in-One Designed Cathode". ECS Meeting Abstracts MA2020-01, nr 52 (1.05.2020): 2923. http://dx.doi.org/10.1149/ma2020-01522923mtgabs.
Pełny tekst źródłaLee, Seungmin, Haeun Lee, Naram Ha, Jung Tae Lee, Jaehan Jung i KwangSup Eom. "In Batteria Electrochemical Polymerization to Form a Protective Conducting Layer on Se/C Cathodes for High‐Performance Li–Se Batteries". Advanced Functional Materials 30, nr 19 (5.03.2020): 2000028. http://dx.doi.org/10.1002/adfm.202000028.
Pełny tekst źródłaTang, Chunmei, Xiaoxu Wang i Shengli Zhang. "Research on metallic chalcogen-functionalized monolayer-puckered V2CX2 (X = S, Se, and Te) as promising Li-ion battery anode materials". Materials Chemistry Frontiers 5, nr 12 (2021): 4672–81. http://dx.doi.org/10.1039/d1qm00422k.
Pełny tekst źródłaZhao, Xiaosen, Lichang Yin, Tong Zhang, Min Zhang, Zhibo Fang, Chunzhong Wang, Yingjin Wei i in. "Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries". Nano Energy 49 (lipiec 2018): 137–46. http://dx.doi.org/10.1016/j.nanoen.2018.04.045.
Pełny tekst źródłaXia, Yang, Chengwei Lu, Ruyi Fang, Hui Huang, Yongping Gan, Chu Liang, Jun Zhang, Xinping He i Wenkui Zhang. "Freestanding layer-structure selenium cathodes with ultrahigh Se loading for high areal capacity Li-Se batteries". Electrochemistry Communications 99 (luty 2019): 16–21. http://dx.doi.org/10.1016/j.elecom.2018.12.013.
Pełny tekst źródłaLuo, Chao, Jingjing Wang, Liumin Suo, Jianfeng Mao, Xiulin Fan i Chunsheng Wang. "In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries". Journal of Materials Chemistry A 3, nr 2 (2015): 555–61. http://dx.doi.org/10.1039/c4ta04611k.
Pełny tekst źródłaCheng, Qiuxia, Luzhu Qin, Chunxian Ke, Jianen Zhou, Jia Lin, Xiaoming Lin, Gang Zhang i Yuepeng Cai. "Four new Zn(ii) and Cd(ii) coordination polymers using two amide-like aromatic multi-carboxylate ligands: synthesis, structures and lithium–selenium batteries application". RSC Advances 9, nr 26 (2019): 14750–57. http://dx.doi.org/10.1039/c9ra02163a.
Pełny tekst źródła