Gotowa bibliografia na temat „Lennard-Jones interaction potential”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Lennard-Jones interaction potential”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Lennard-Jones interaction potential"
Qu, Dayi, Zixu Zhao, Chunyan Hu, Tao Wang i Hui Song. "Car-Following Dynamics, Characteristics, and Model Based on Interaction Potential Function". Journal of Advanced Transportation 2022 (29.01.2022): 1–11. http://dx.doi.org/10.1155/2022/5274056.
Pełny tekst źródłaLIM, TEIK-CHENG. "UNITED ATOM MODEL APPROACH FOR DESCRIBING C60 INTERACTION ENERGY IN MOLECULAR MECHANICS". Journal of Theoretical and Computational Chemistry 10, nr 04 (sierpień 2011): 423–34. http://dx.doi.org/10.1142/s0219633611006554.
Pełny tekst źródłaSaxena, Vivek. "Molecular dynamics simulation of interhalogen compounds using two potential models 2. Liquid bromine trifluoride (BrF3) — structure and thermodynamics". Canadian Journal of Chemistry 71, nr 12 (1.12.1993): 2189–93. http://dx.doi.org/10.1139/v93-274.
Pełny tekst źródłaAdeniji, A. A., I. A. Fedotov, J. O. Ehigie, M. Y. Shatalov i S. A. Surulere. "Nonlinear Interactions in Nanolattices Described by the Classical Morse, Biswas – Hamann and Modified Lennard – Jones Potentials". Nelineinaya Dinamika 18, nr 2 (2022): 183–201. http://dx.doi.org/10.20537/nd220203.
Pełny tekst źródłaWójcicki, Piotr, i Tomasz Zientarski. "APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION". Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 9, nr 4 (15.12.2019): 14–17. http://dx.doi.org/10.35784/iapgos.45.
Pełny tekst źródłaOkabe, Tsuneyasu, i Hiroaki Yamada. "Lyapunov Instability in One-Dimensional Lennard-Jones System". International Journal of Modern Physics B 12, nr 09 (10.04.1998): 901–20. http://dx.doi.org/10.1142/s0217979298000508.
Pełny tekst źródłaFuwa, Masahiro, i Masahide Sato. "Effect of impurities on tiling in a two-dimensional dodecagonal quasicrystal". Japanese Journal of Applied Physics 61, nr 4 (17.03.2022): 045504. http://dx.doi.org/10.35848/1347-4065/ac5530.
Pełny tekst źródłaHe, Ke Rong. "Optimaization of Single-Walled Carbon Nanotube for Adsorption of Methane". Advanced Materials Research 291-294 (lipiec 2011): 490–93. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.490.
Pełny tekst źródłaVAIA, RUGGERO, i VALERIO TOGNETTI. "EFFECTIVE POTENTIAL FOR TWO-BODY INTERACTIONS". International Journal of Modern Physics B 04, nr 13 (październik 1990): 2005–23. http://dx.doi.org/10.1142/s0217979290001005.
Pełny tekst źródłaOkabe, Tsuneyasu, i Hiroaki Yamada. "Instability of One-Dimensional Lennard–Jones System — Particle Density Dependence". Modern Physics Letters B 12, nr 16 (10.07.1998): 615–22. http://dx.doi.org/10.1142/s021798499800072x.
Pełny tekst źródłaRozprawy doktorskie na temat "Lennard-Jones interaction potential"
Maury, Axel. "Effet Casimir-Polder sur des atomes piégés". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066327/document.
Pełny tekst źródłaThis thesis presents the theoretical modeling of the experiment FORCA-G. The purpose of this experiment is to measure short-range interactions between trapped atoms in an optical lattice and a massive surface with a high precision. We are focused on Casimir-Polder effect induced by the surface on the atoms. The aim was to give the most possible precise prediction of atomic states. This work took the temperature effects on Casimir-Polder interaction into account, modelled the surface of the experiment. In order to solve the divergence problem due to the perturbative treatment of the atom-surface interaction, we developed a digital method for a non-perturbative treatment of the Casimir-Polder interaction and modelled the short-range atom-surface interaction by a Lennard-Jones potential. Each effect and uncertainties on the atomic states were evaluated so that we know if they could be observable or a limiting factor compared to the experiment precision. Finally we were focused on an out of thermal equilibrium situation between the miroir and environment temperature which may be induced by the lasers. We computed the correction to the Casimir-Polder potential due to this disequilibrium and evaluated the effect on the atomic states
Duffour, Emmanuel. "Interaction plasma-isolant. Applications au lanceurélectrothermique et à l'interaction SF6-polyéthylène". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2000. http://tel.archives-ouvertes.fr/tel-00011655.
Pełny tekst źródłaUne étude fondamentale de la dynamique moléculaire, basée sur l'utilisation des méthodes numériques particulières comme les intégrateurs symplétiques et l'exploitation des différents potentiels d'interactions existants (Morse, Lennard-Jones...), a abouti à deux modèles de polymère : le polyéthylène ou PE (CH2)n. Le premier modèle dit simplifié consiste à considérer un groupement CH2 comme un atome fictif de masse molaire 14g, tandis que le second plus complet traite la dynamique de l'atome d'hydrogène au sein de la macromolécule. Ces deux modèles sont utilsés, dans le cadre de ce travail, pour diverses interactions.
Par ailleurs, des mesures expérimentales de perte de masse des matériaux polymères qui interagissent avec un plasma, créé par l'explosion d'un fil de cuivre, sont exposées. Ces résultats sont corrélés par des calculs théoriques de thermodynamique qui montrent une différence de comportement des deux polymères testés : le polyéthylène et le polyoxyméthylène, POM ou Delrin (CH2O)n.
Roy, Suprateek. "Quasi-Static and Implicit-Dynamic Finite Element Solution of Large Deformation Elastic Adhesive Contacts Using a Volumetric Interaction Scheme". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5699.
Pełny tekst źródłaKumar, Sumit. "Electric Field Induced Phenomena: Mass Flow and Chemical Reaction-based Patterning". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/4449.
Pełny tekst źródłaKhosathit, Padet. "Simulation of the Molecular Interactions for the Microcantilever Sensors". Master's thesis, 2009. http://hdl.handle.net/10048/671.
Pełny tekst źródłaCzęści książek na temat "Lennard-Jones interaction potential"
Sie, Edbert Jarvis. "Lennard-Jones-Like Potential of 2D Excitons in Monolayer WS2". W Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides, 93–114. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69554-9_7.
Pełny tekst źródłaA.F. Kamta, Yannick. "Graphene Exfoliation from HOPG Using the Difference in Binding Energy between Graphite, Graphene and a Substrate". W Graphene - Recent Advances, Future Perspective and Applied Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107142.
Pełny tekst źródłaStreszczenia konferencji na temat "Lennard-Jones interaction potential"
Biwa, S., S. Iwata, K. Kakoi i N. Ohno. "Numerical Analysis of Surface Deformation and Adhesion by Lennard-Jones Interaction Potential". W ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64362.
Pełny tekst źródłaSong, Z., i K. Komvopoulos. "A Continuum Mechanics Model of Adhesive Contact Based on the Lennard-Jones Potential". W STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41154.
Pełny tekst źródłaSinha, Shashank, Vijay K. Dhir, Bo Shi, Jonathan B. Freund i Eric Darve. "Surface Tension Evaluation of Lennard-Jones Fluid System With Untruncated Potentials". W ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47164.
Pełny tekst źródłaWilber, J. Patrick, Curtis B. Clemons, Amy E. Pudloski, Gerald W. Young, Alper Buldum i D. Dane Quinn. "Buckling Instabilities in Coupled Nanoscale Structures". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81922.
Pełny tekst źródłaAouf, Rashad, i Vojislav Ilic. "Microscopic Observation of Energy Propagation in Polymeric Fluids Crossing a Barrier". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66752.
Pełny tekst źródłaPorterfield, Malcolm, i Diana Borca-Tasciuc. "Molecular Dynamics Simulation of Ultra-Fast Phase Transition in Water Nanofilms". W ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9073.
Pełny tekst źródłaWemhoff, Aaron P. "Predictions of Adsorption Enthalpy on Graphitic Surfaces Using Statistical Thermodynamics". W ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17365.
Pełny tekst źródłaMatsuoka, Hiroshige, Ryoya Miyake, Satoru Maegawa i Shigehisa Fukui. "Theoretical Analyses of Surface Interaction Stresses Considering Two-Dimensional Periodic Material Distributions". W ASME 2017 Conference on Information Storage and Processing Systems collocated with the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/isps2017-5438.
Pełny tekst źródłaCosden, Ian A., i Jennifer R. Lukes. "The Surface Tension of Nanobubbles and the Effect of the Potential Cutoff Radius". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22300.
Pełny tekst źródłaMatsuoka, Hiroshige, Teppei Tanaka, Ryoya Miyake i Shigehisa Fukui. "Theoretical Study of Surface Interaction Stresses Considering One-Dimensional Material Distributions in the In-Plane Direction Based on the Lennard-Jones Potential". W ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9597.
Pełny tekst źródła