Rozprawy doktorskie na temat „Layered metal dichalcogenides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 20 najlepszych rozpraw doktorskich naukowych na temat „Layered metal dichalcogenides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Ritschel, Tobias. "Electronic self-organization in layered transition metal dichalcogenides". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188265.
Pełny tekst źródłaKganyago, Khomotso R. "A Theoretical Study of Alkali Metal Intercalated Layered Metal Dichalcogenides and Chevrel Phase Molybdenum Chalcogenides". Thesis, University of Limpopo (Turfloop Campus), 2004. http://hdl.handle.net/10386/702.
Pełny tekst źródłaThis thesis explores the important issues associated with the insertion of Mg2+ and Li+ into the solid materials: molybdenum sulphide and titanium disulphide. This process, which is also known as intercalation, is driven by charge transfer and is the basic cell reaction of advanced batteries. We perform a systematic computational investigation of the new Chevrel phase, MgxMo6S8 for 0 ≤ x ≤ 2, a candidate for high energy density cathode in prototype rechargeable magnesium (Mg) battery systems. Mg2+ intercalation property of the Mo6S8 Chevrel phase compound and accompanied structural changes were evaluated. We conduct our study within the framework of both the local-density functional theory and the generalised gradient approximation techniques. Analysis of the calculated energetics for different magnesium positions and composition suggest a triclinic structure of MgxMo6S8 (x = 1 and 2). The results compare favourably with experimental data. Band-structure calculations imply the existence of an energy gap located ~1 eV above the Fermi level, which is a characteristic feature of the electronic structure of the Chevrel compounds. Calculations of electronic charge density suggest a charge transfer from Mg to the Mo6S8 cluster, which has a significant effect on the Mo-Mo bond length. There is relatively no theoretical work, in particular ab initio pseudopotential calculations, reported in literature on structural stability, cations "site energy" calculations, and pressure work. Structures obtained on the basis from experimental studies of other ternary molybdenum sulphides are examined with respect to pressure-induced structural transformation. We report the first bulk and linear moduli of the new Chevrel phase structures. This thesis also studies the reaction between lithium and titanium disulfide, which is the perfect intercalation reaction, with the product having the same structure over the range of reaction 0 x 1 in LixTiS2. Calculated lattice parameters, bulk moduli, linear moduli, elastic constants, density of states, and Mulliken populations are reported. Our calculations confirm that there is a single phase present with an expansion of the crystalline lattice as is typical for a solid solution, about 10% perpendicular to the basal plane layers. A slight expansion of the lattice in the basal plane is also observed due to the electron density increasing on the sulfur ions. Details on the correlation between the electronic structure and the energetic (i.e. the thermodynamics) of intercalation are obtained by establishing the connection between the charge transfer and lithium intercalation into TiS2. The theoretical determination of the densities of states for the pure TiS2 and Li1TiS2 confirms a charge transfer. Lithium charge is donated to the S (3p) and Ti (3d) orbitals. Comparison with experiment shows that the calculated optical properties for energies below 12 eV agrees well with reflectivity spectra. The structural and electronic properties of the intercalation compound LixTiS2, for x = 1/4, 3/4, and 1, are also investigated. This study indicates that the following physical changes in LixTiS2 are induced by intercalation: (1) the crystal expands uniaxially in the c-direction, (2) no staging is observed. We also focus on the intercalation voltage where the variation of the cell potential with the degree of discharge for LiTiS2 is calculated. Our results show that it can be predicted with these well-developed total energy methods. The detailed understanding of the electronic structure of the intercalation compounds provided by this method gives an approach to the interpretation of the voltage composition profiles of electrode materials, and may now clearly be used routinely to determine the contributions of the anode and cathode processes to the cell voltage. Hence becoming an important tool in the selection and design of new systems. Keywords Magnesium rechargeable battery; Chevrel, Lithium batteries; Li and Mg-ion insertion; TiS2; Mo6S8; Charge transfer; reflectivity, intercalation, elastic constants, voltage, EOS, Moduli.
the National Research Foundation, the Royal Society(U.K),the Council for Scientific and Industrial Research,and Eskom
Nur, Baizura Binti Mohamed. "Study on photoluminescence quantum yields of atomically thin-layered two-dimensional semiconductors transition metal dichalcogenides". Kyoto University, 2018. http://hdl.handle.net/2433/233854.
Pełny tekst źródłaRitschel, Tobias [Verfasser], Bernd [Akademischer Betreuer] Büchner, Jochen [Akademischer Betreuer] Geck i Kai [Akademischer Betreuer] Roßnagel. "Electronic self-organization in layered transition metal dichalcogenides / Tobias Ritschel. Betreuer: Bernd Büchner ; Jochen Geck. Gutachter: Bernd Büchner ; Kai Roßnagel". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1079468161/34.
Pełny tekst źródłaGrosse, Corinna. "Structural and electrical characterization of novel layered intergrowth compounds". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17432.
Pełny tekst źródłaThe investigated ferecrystals are novel layered intergrowth compounds consisting of m monolayers of niobium diselenide (NbSe2) stacked repeatedly with n atomic bilayers of lead selenide (PbSe) or tin selenide (SnSe). Bulk NbSe2 is a layered compound showing superconductivity. Due to their artificially atomic-scale layered structure, which is tunable on the atomic scale, ferecrystals can serve as model systems for layered superconductors. In this study, their structural and electrical properties are investigated. Using transmission electron microscopy their turbostratically disordered, nanocrystalline structure is revealed. The atomic structure within the individual layers is similar as for bulk NbSe2, PbSe and SnSe, with the crystallographic c-axes parallel to the stacking direction in the ferecrystals. A quantitative analysis using a two-layer model fit for the electrical resistivity, Hall coefficient and magnetoresistance yields a similar carrier type, density and mobility in the NbSe2 layers as reported for isolated NbSe2 monolayers. These values differ from those of bulk NbSe2. For the first time, a normal-to-superconducting transition has been detected in ferecrystals. The transition temperatures of the ferecrystals are reduced to about a half of those of analogous non-disordered misfit layer compounds. This reduction in transition temperature can be correlated to the turbostratic disorder in ferecrystals. The ratio between the cross-plane Ginzburg-Landau coherence length and the cross-plane distance between the NbSe2 layers for the ferecrystals is lower than for non-disordered misfit layer compounds, making ferecrystals promising candidates for (quasi-)two-dimensional superconductors.
Rahneshin, Vahid. "Versatile High Performance Photomechanical Actuators Based on Two-dimensional Nanomaterials". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/549.
Pełny tekst źródłaBrowning, Robert. "Synthesis and Characterization of the 2-Dimensional Transition Metal Dichalcogenides". PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3483.
Pełny tekst źródłaALEITHAN, SHROUQ H. "Mono-to-few Layers Transition Metal Dichalcogenides, Exciton Dynamics, and Versatile Growth of Naturally Formed Contacted Devices". Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1522165070034846.
Pełny tekst źródłaChono, Hiroomi. "Nonequilibrium quantum phenomena and topological superconductivity in atomic layer materials". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263449.
Pełny tekst źródłaPIATTI, ERIK. "Electrochemical gating for superconductivity engineering in materials towards the 2D limit". Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2669688.
Pełny tekst źródłaFraccaroli, Mathias. "Synthèse par CVD/ALD sur grandes surfaces d'un sulfure de vanadium transparent et conducteur". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT006.
Pełny tekst źródłaIn the context of functional diversification (“More than Moore”), transition sulfides are currently being actively studied for original optical devices production. Some materials in this family have a lamellar structure, similar to graphene like vanadium sulfides. The synthesis of these lamellar films remains actively dominated by high-temperature CVD processes (> 550 ° C). However, in order to hope the development of a reliable synthesis methods, it's important to reduce this deposition temperature which leads to a poor uniformity and a poor conformity. In this work we have studied the potential of a chemical vapor deposition approach at low temperature (200 ° C). This method allow us to obtain an amorphous vanadium sulfide film on a 300 mm wafer and point out theirability to self-reorganize in order to obtain a lamellar film of V7S8 after thermal annealing. A 5.2nm film has interesting optical and electrical properties; this film is conductive with a carrier density of 1.1.1023 cm-3, the holes are the main charges carriers (type p), a mobility of 0.2 cm2. (Vs) -1, a conductivity of 1063 S.cm -1, an output work of 4.8 eV while preserving good transparency (transmittance of 75% for a wavelength of 550nm)
Singh, Deependra Kumar. "Layered Metal Dichalcogenides-Based Hybrid Devices for Resistive Sensing". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5175.
Pełny tekst źródłaKoperski, Maciej. "Optical properties of thin layers of transition metal dichalcogenides". Doctoral thesis, 2017. https://depotuw.ceon.pl/handle/item/2063.
Pełny tekst źródłaBadania opisane w rozprawie pod tytułem „Optyczne własności cienkich warstw dichalkogenków metali przejściowych” dotyczą zjawisk fizycznych, które pojawiają się w granicy dwuwymiarowej miniaturyzacji, gdy grubość struktur osiąga skalę atomową. Znaczenie takich wytworzonych przez człowieka struktur dla zrozumienia podstawowych własności materiałów ujawniło się podczas dynamicznie rozwijających się badań nad grafenem: pojedynczej warstwie atomów węgla ułożonych w strukturę heksagonalną. Grafen, jako materiał bez przerwy energetycznej, był rozpatrywany głównie pod kątem własności elektrycznych. Badania materiałów półprzewodnikowych, również charakteryzujących się strukturą heksagonalną, dla których udało się odizolować pojedyncze warstwy, łączą nowe idee wywodzące się z odkrycia szczególnych cech grafenu (fizyka dolin w punkcie K strefy Brillouina) z wiedzą o bardziej typowych właściwościach półprzewodników. Rzeczywiście, nowego typu zjawiska zostały zademonstrowane w licznych, prowadzonych ostatnio, badaniach ultra-cienkich warstw półprzewodnikowych dichalkogenków metali przejściowych. Szczególnie interesujące, z puntu widzenia badań optycznych, wydaje się odkrycie zmiany charakteru przerwy energetycznej, która jest skośna w kryształach objętościowych, ale staje się prosta dla pojedynczej warstwy materiału. Opisane w tej pracy badania wykorzystują szczegółową charakteryzację optycznych własności cienkich struktur dichalkogenków metali przejściowych jako podstawę do rozważań na temat ich własności elektronowych. Manuskrypt składa się z pięciu części: trzech głównych rozdziałów poprzedzonych wstępem i uzupełnionych dodatkiem, w którym omówione zostały badania dotyczące innego przedstawiciela materiałów warstwowych: heksagonalnego azotku boru. Wstęp. Przedstawione zostały podstawowe własności badanych kryształów, szczególnie istotne z punktu widzenia badań optycznych. Dyskusja obejmuje informacje o strukturze krystalicznej, strefie Brillouina i elektronowej strukturze pasmowej. Ponadto omówiono ogólnie proces wytwarzania próbek i główne cechy układów doświadczalnych. Rozdział 1. Podstawowe własności optyczne rezonansów ekscytonowych w pojedynczych warstwach i wielowarstwach półprzewodnikowych dichalkogenków metali przejściowych. Przeanalizowano optyczną odpowiedź cienkich struktur dwuselenku molibdenu (MoSe2) i dwuselenku wolframu (WSe2), badaną poprzez pomiary widm odbicia i luminescencji. Szczegółowo zinterpretowano dane doświadczalne dotyczące wpływu liczby warstw oraz temperatury na energię i szerokość optycznych rezonansów. Uwzględniono także uzupełniające badania rozdzielone w czasie. Rozdział 2. Spektroskopia Zeemana rezonansów ekscytonowych w polu magnetycznym. Zbadano wpływ pola magnetycznego, przyłożonego prostopadle do powierzchni badanych struktur, na przejścia optyczne. Na podstawie otrzymanych wyników opracowano fenomenologiczny model mający na celu opis liniowych z polem magnetycznym wkładów do energii indywidualnych stanów elektronowych w podstawowych podpasmach pojedynczych warstw dichalkogenków metali przejściowych. Ponadto przeanalizowano efekty związane z pompowaniem optycznym w pojedynczych warstwach WSe2, którego wydajność można zwiększyć poprzez przyłożenie niewielkiego pola magnetycznego. Rozdział 3. Źródła pojedynczych fotonów w cienkich warstwach półprzewodnikowych dichalkogenków metali przejściowych. Przedyskutowano odkrycie centrów emitujących światło w postaci cienkich linii widmowych w eksfoliowanych strukturach dichalkogenków metali przejściowych. Optyczne badania dostarczyły informacji o ich podstawowych własnościach. Przedstawione badania dotyczą wpływu temperatury i pola magnetycznego na optyczną odpowiedź emitujących centrów, własności polaryzacyjnych oraz widm pobudzania jak również pomiarów korelacji fotonów. Dodatek A. Emitery pojedynczych fotonów w kryształach azotku boru. Heksagonalny azotek boru również należy do rodziny materiałów warstwowych, lecz charakteryzuje się znacznie większą przerwą energetyczną niż dichalkogenki metali przejściowych. Centra emitujące wąskie linie widmowe także zostały zaobserwowane w strukturach azotku boru. Wykazują one cechy upodabniające je do barwnych centrów w innych materiałach szeroko-przerwowych. Emitery w azotku boru zostały scharakteryzowane podobnie jak emitery w kryształach WSe2.
Brandt, Julia [Verfasser]. "Geometric and electronic structure of misfit layered compounds and epitaxial thin films of PbS on transition metal dichalcogenides / vorgelegt von Julia Brandt". 2003. http://d-nb.info/971702314/34.
Pełny tekst źródłaGrzeszczyk, Magdalena. "Rozpraszanie Ramana w cienkich warstwach tellurku molibdenu (MoTe2)". Doctoral thesis, 2020. https://depotuw.ceon.pl/handle/item/3692.
Pełny tekst źródłaObtaining a single layer of carbon atoms - graphene - initiated a new trend in science focusing on two-dimensional structures of well-known bulk materials. In addition, rapid advances in mechanical exfoliation techniques have contributed to increased interest in layered materials, including transition metal dichalcogenides (TMD). The variety of chemico-physical properties distinguishes these materials with an extremely wide range of possible applications in the fields of electronics, optoelectronics, photovoltaics. They can also be used in medicine and biological sensors. The aim of this work is the characterization of optical properties as a function of the thickness of a typical representative from the semiconducting TMD family. Molybdenum ditelluride (MoTe2) was chosen since it remains relatively poorly known as compared to other TMDs like MoS2. The research conducted as part of the thesis is focused on Raman scattering spectroscopy. This technique relies on measurements of light scattered on a crystal, yielding information on crystal lattice dynamics, heat propagation and mechanical strength. Raman scattering spectroscopy primarily remains an important method to determine the thickness of the examined flakes. The doctoral dissertation contains ten chapters. Chapter 1 is a review of general information on 2D materials, in particular, semiconducting TMDs. Due to the breadth of the topic, the focus is on selected aspects that are particularly relevant to the work. Chapter 2 focuses on the properties of MoTe2 in the bulk form and its thin layers. Its crystal and bandwidth structure and dependencies of phonon dispersion are presented. These characteristics are the basis for understanding the presented results. Chapter 3 demonstrates a wide range of methods of obtaining the materials in question and techniques of their characterization. Chapter 4 provides a theoretical description of the basics of Raman scattering spectroscopy and group theory notation needed to understand the analysis performed in the following chapters. Chapter 5 contains a detailed description of the method of fabrication of the samples used in the study. Experimental setups are also presented. In Chapter 6, the identification of phonon modes has been carried out, which enables determination of the thin layer thickness based on Raman scattering spectra. Chapter 7 contains results obtained during the measurement of the samples with a different number of layers. Based on these results, low energy phonons in thin layers MoTe2 and its heterostructures were analyzed, which made it possible to determine the force constants of layer-layer and layer-substrate interactions. Additionally, splitting of phonon modes caused by the Davydov effect and the interaction with the substrate were described. Chapter 8 summarizes the results of Raman scattering in relation to the energy of excitation. These studies revealed several resonance effects related to the maxima in the density of states at characteristic points of the Brillouin zone and quantum interference. Chapter 9 describes the temperature-dependent measurements. These results complement the previous chapter. The last part of the dissertation is a summary of the work. This chapter also contains a list of the author's achievements. The work concludes with a bibliography.
Mahajan, Mehak. "Charge Density Wave-driven Carrier Transport in Layered Heterostructures". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5850.
Pełny tekst źródłaChiu, Yi-Lun, i 邱益綸. "Ultrafast Carrier Dynamics of Few-layer Transition Metal Dichalcogenide MoSe2". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/xx3nj5.
Pełny tekst źródła國立交通大學
光電工程研究所
106
Ultrafast dynamic properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) molybdenum diselenide (MoSe2) films were investigated using femtosecond pump-and-probe technique. Strong in-plane covalent bonding and weak van der Waals coupling between TMDC layers enables MoSe2 to have layered structure. Bulk and multilayer MoSe2 is known to have an indirect bandgap, while monolayer MoSe2 is a direct bandgap semiconductor. Its unique property of strong quantum confinement leads to the formation of tightly bound excitons with extremely large binding energy for atomically thin TMDCs. In this work, we have studied the ultrafast dynamic evolution of A-excitons in multilayer (2–4 layers) MoSe2 grown by chemical vapor deposition (CVD). The transient transmission shows the initial negative signals around time zero for both far below and above the A-exciton absorption edge, whereas it shows the positive signals near the exciton transition peak. The photoexcited carriers relax quickly within 0.7 ps, which can be attributed to either carrier cooling via carrier-phonon scattering or defect capturing. The fast relaxing negative (positive) signals change its sign to positive (negative) instead of simple exponential decay to equilibrium and slowly relax within 20 – 30 ps. This secondary absorption may be defect-induced absorption related to the CVD deposition process. The band-broadening due to carrier collision in closely neighboring A and B excitons may be responsible for the sign flipping of initial photo-induced absorption.
Chu, Tung-Wei, i 屈統威. "The Growth of Large-Area Transition Metal Dichalcogenide Hetero-Structures and the Development of the Atomic Layer Etching". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/75bnb4.
Pełny tekst źródła國立臺灣大學
光電工程學研究所
105
In this thesis, we have demonstrated that large-area molybdenum disulfide (MoS2) can be prepared by sulfurizing the pre-deposited transition metal films. Good layer number controllability up to 10 layers of the MoS2 film is also achieved by controlling the sputtering times of the pre-deposited transition metal films. For the sample with thicker Mo films, although MoS2 films with the layer number larger than 10 can be obtained, clusters of multi-layer 2D crystals covering Mo oxides are obtained for the sample. The results suggest that two growth mechanisms of planar MoS2 formation and Mo oxide segregation would take place simultaneously during the sulfurization procedure. After sequential transition metal deposition and sulfurization procedures of Mo and tungsten (W), MoS2/WS2 2D crystal hetero-structures can be established. After transferring the hetero-structure film to a 300 nm SiO2/Si substrate, a bottom-gate transistor with enhanced field-effect mobility is obtained. The results have revealed that the establishment of different hetero-structures is a promising approach to overcome the limit of individual 2D crystals and still maintain their advantage. The atomic layer etchings of MoS2 and WS2 are demonstrated in this paper. By repeated oxygen plasma etchings and a final re-sulfurization procedure, multi-layer WS2 can be selectively etched off from the WS2/MoS2 hetero-structure. A WS2/MoS2 hetero-structure transistor is fabricated with source/drain electrodes contacted directly to the MoS2 channel by using the repeated atomic layer etching technique. The results have revealed that the equivalent selective etching effect for two-dimensional crystal hetero-structures can be achieved by repeating the atomic layer etching procedure, which is an important step for the device fabrication of 2D crystal hetero-structures.
Dandu, Medha. "Tailoring optical and electrical characteristics of layered materials through van der Waals heterojunctions". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5623.
Pełny tekst źródłaYu, Chang-Hung, i 余昌鴻. "Investigation and Analysis of Ultra-Thin-Body Hetero-Channel III-V/Ge MOSFETs and Mono-/Few-Layer 2-D Transition-Metal-Dichalcogenide Based Logic Circuits and SRAM Cells". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/87955385284377994089.
Pełny tekst źródła國立交通大學
電子研究所
105
This dissertation provides an extensive assessment of the scalability of the exploratory ultra-thin-body (UTB) III-V/Ge hetero-channel MOSFETs and the performance/stability of 2-D transition-metal-dichalcogenide (TMD) based logic circuits and SRAM cells. Device-circuit interactions and co-optimizations are considered to demonstrate the potential and concerns of the emerging TMD hetero-channel devices from the device/circuit point of view. Through our analysis, the impacts of quantum confinement, backgate biasing, and device variability are investigated to offer insights for future low-voltage device/circuit designs. A new intrinsic mechanism “built-in effective body-bias (VBS,eff) effect” related to the vertical backgate coupling in UTB hetero-channel GeOI and III-V-OI MOSFETs is reported and quantified to be responsible for the anomalous electrostatic integrity (EI) behaviors which violate the expectation of permittivity. For hetero-channel n-MOSFETs, this effect results from the conduction band offset (composed of discrepancies in electron affinity and the effective density-of-states of conduction band) between the high-mobility channel and conventional Si channel. For hetero-channel p-MOSFETs, this effect stems from the valence band offset (which mainly comes from the discrepancies in channel band-gap for Ge pFETs). From the perspective of electrostatic integrity, the built-in effective body-bias effect is shown to be a detrimental effect (whose impact can be comparable to that of permittivity) for most III-V-OI nFETs and the GeOI pFET, and thus the device electrostatics can be worse than what permittivity predicts. In addition, it is shown that the In0.53Ga0.47As-OI nFET and GeOI pFET may possess worse threshold-voltage (VT) variability than the GeOI nFET counterparts due to the aggravated EI by the built-in forward VBS,eff effect. The L-, EOT-, Tch-, TBOX-dependences of the impact of built-in VBS,eff on device electrostatics are also examined and discussed. This intrinsic effect has to be considered when one-to-one comparisons among various UTB hetero-channel MOSFETs regarding the electrostatic integrity are made. The quantum confinement effect becomes critical as channel-thickness keeps scaling down, and its impacts on the device electrostatic integrity and the intrinsic VT variability are theoretically investigated through an analytical solution of Schrödinger equation corroborated with TCAD numerical simulation. Besides, the backgate-bias modulated electrostatic integrity (including drain-induced-barrier-lowering (DIBL), subthreshold swing, and VT roll-off) and VT variability considering qunatum confinement are also analyzed. Our study indicates that albeit the carrier density distribution of the hetero-channel device can be far from the frontgate interface due to the high channel permittivity and the built-in forward body-bias effect, the quantum-confinement effect can move the carrier centroid toward the frontgate, and therefore the device EI such as DIBL and subthreshold swing can be improved and becomes comparable to the Si device. Moreover, the quantum confinement effect lessens the backgate-bias dependences of device electrostatic integrity and the intrinsic VT variability to process and temperature variations for UTB III-V/Ge hetero-channel devices. In other words, the backgate-bias dependence of the within-die VT variation can be suppressed by the quantum confinement effect as the backgate bias is used for power-performance optimization or global variability compensation. Since III-V, Ge and Si channels exhibit different degree of quantum confinement due to different quantization effective mass, the impact of quantum confinement has to be considered when one-to-one comparisons among the hetero-channel devices regarding electrostatic and intrinsic variability are made. Our study may provide insights for multi-VT device/circuit designs using advanced UTB technologies. 2-D layered TMD materials have emerged as promising channel materials for future ultimately-scaled CMOS devices due to the atomic-scale body thickness. We extensively evaluate the performance of logic circuits and the stability/performance of SRAM cells using mono-layer and bi-layer TMD devices based on ITRS 2028 (5.9nm) technology node. For the static CMOS logic family, albeit the bi-layer TMD devices possess higher mobility than the mono-layer counterpart, the mono-layer and bi-layer static CMOS logic circuits may show comparable delay time. On the other hand, for the pass-transistor logic family, the bi-layer pass-transistor logic circuits may exhibit much slower delay time that the mono-layer ones counterparts, particularly for those using single nMOS pass-gate transistors instead of transmission gate as signal propagation switches (e.g., the programmable routing switches in FPGAs). In the SRAM evaluations, the mono-layer MoS2-n/WSe2-p SRAM, with superior device electrostatics, is shown to exhibit larger read static noise margin (RSNM), smaller write static noise margin (WSNM), and comparable read/write performance compared with the bi-layer counterparts. Besides the nominal evaluations, the impacts of intrinsic random variations on the cell stability of 6T/8T TMD based SRAM cells for super-threshold and near-/sub-threshold operations are also conducted. Our study indicates that, for 6T SRAM, due to severe metal gate work function variation (WFV) stemming from the tiny gate area, the mono-layer SRAMs may offer sufficient immunity under super-threshold operation, while both the mono-layer/bi-layer near-/sub-threshold SRAMs exhibit unacceptable RSNM variability in spite of the excellent electrostatics of mono-layer TMD devices. Besides, high source/drain series resistance (RSD) as a major concern of TMDs may degrade the / ratios for mono-layer and bi-layer super-threshold SRAMs, whereas it should be less of an issue for near-/sub-threshold SRAMs for ultra-low power internet-of-things (IoT) applications. The standard 8T SRAM cell with the capability of elimination of read disturb may be utilized to improve the noise margin for variation tolerance. Our results show that the RSNM variations due to WFV of both mono-layer and bi-layer near-/sub-threshold SRAMs can be significantly improved by using 8T cell structure, and thus the 6 RSNM yield requirement can be met. Based on our evaluation, due to the excellent device electrostatics stemming from its single atomic layer, the mono-layer TMD devices are favored for low-power logic and SRAM applications; while the bi-layer devices, with higher carrier mobility, are more suitable for relaxed channel length and high-performance logic and SRAM applications. Our research in TMD based logic circuits and SRAM cells is also extended from planar technology to monolithic 3-D integration. The performance of 3-D logic circuits and performance/stability of 3-D 6T SRAM cells using mono- and few-layer TMD devices are comprehensively evaluated and benchmarked against the planar technology. With the possibility of adopting mono-layer or few-layer TMDs for nFET- and pFET-tiers enabled by monolithic 3-D integration, our study indicates that using the tri-layer devices for nFET- or pFET-tiers may substantially degrade the performance of logic circuits (compared with the planar technology and other 3-D combinations) due to worse subthreshold swing and DIBL even though their mobilities are much higher. For monolithic 3-D 6T SRAMs, stacking the mono-layer pFET-tier over the bi-layer nFET-tier can provide superior stability and read/write performance for 6T super-threshold SRAM cells compared with the planar technology. However, the optimum 3-D configuration for 6T near-/sub-threshold SRAM cell appears to be the mono-layer pFET-tier over the mono-layer nFET-tier. Besides the 6T cell structure, Monolithic 3-D 8T SRAM cells are also investigated under near-/sub-threshold operation. The mono-layer nFET-tier over the bi-layer pFET-tier configuration has been shown to be the optimum 3-D 8T near-/sub-threshold cell design.