Artykuły w czasopismach na temat „Launch Vehicle Model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Launch Vehicle Model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
You, Ming, Qun Zong, Bailing Tian i Fanlin Zeng. "Nonsingular terminal sliding mode control for reusable launch vehicle with atmospheric disturbances". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, nr 11 (8.05.2017): 2019–33. http://dx.doi.org/10.1177/0954410017708211.
Pełny tekst źródłaGibson, Denton, Waldemar Karwowski, Timothy Kotnour, Luis Rabelo i David Kern. "The Relationships between Organizational Factors and Systems Engineering Process Performance in Launching Space Vehicles". Applied Sciences 12, nr 22 (14.11.2022): 11541. http://dx.doi.org/10.3390/app122211541.
Pełny tekst źródłaHladkyi, Ye H., i V. I. Perlyk. "How Yuzhnoye develops models for flight safety index evaluation for the case of a rocket failure during the flight". Kosmičeskaâ tehnika. Raketnoe vooruženie 2023, nr 1 (12.05.2023): 14–30. http://dx.doi.org/10.33136/stma2023.01.014.
Pełny tekst źródłaPu, Pengyu, i Yi Jiang. "Assessing Turbulence Models on the Simulation of Launch Vehicle Base Heating". International Journal of Aerospace Engineering 2019 (22.08.2019): 1–14. http://dx.doi.org/10.1155/2019/4240980.
Pełny tekst źródłada Cás, Pedro L. K., Carlos A. G. Veras, Olexiy Shynkarenko i Rodrigo Leonardi. "A Brazilian Space Launch System for the Small Satellite Market". Aerospace 6, nr 11 (12.11.2019): 123. http://dx.doi.org/10.3390/aerospace6110123.
Pełny tekst źródłaAdelfang, S. I., O. E. Smith i G. W. Batts. "Ascent wind model for launch vehicle design". Journal of Spacecraft and Rockets 31, nr 3 (maj 1994): 502–8. http://dx.doi.org/10.2514/3.26467.
Pełny tekst źródłaWang, J. T., G. Y. Hang, H. M. Shen, Z. Y. Liu, H. J. Xue, T. Wang i W. Yu. "Numerical Simulation of Shock Wave Damage to Medium-Range and Long-Range Targets". Journal of Physics: Conference Series 2478, nr 2 (1.06.2023): 022002. http://dx.doi.org/10.1088/1742-6596/2478/2/022002.
Pełny tekst źródłaGolubek, A. V., i N. M. Dron'. "Launch Vehicle Rendezvous to Catalogued Orbital Debris while Injecting into Highly-Inclined Orbits". Nauka ta innovacii 16, nr 6 (12.06.2020): 46–55. http://dx.doi.org/10.15407/scin16.06.046.
Pełny tekst źródłaGolubek, A. V., i N. M. Dron'. "Launch Vehicle Rendezvous to Catalogued Orbital Debris while Injecting into Highly-Inclined Orbits". Science and innovation 16, nr 6 (listopad 2020): 46–55. http://dx.doi.org/10.15407/scine16.06.046.
Pełny tekst źródłaPeng, Bo, Cheng Ma, Guodong Wang, Fengyan Hu, Ke Mei i Jian Yang. "An aerodynamic surrogate model of launch vehicle based on relevance vector machine". Journal of Physics: Conference Series 2181, nr 1 (1.01.2022): 012021. http://dx.doi.org/10.1088/1742-6596/2181/1/012021.
Pełny tekst źródłaSong, Haryong, i Yongtae Choi. "Distributed multiple model extended information filter with unbiased mixing for satellite launch vehicle tracking". International Journal of Distributed Sensor Networks 14, nr 4 (kwiecień 2018): 155014771876926. http://dx.doi.org/10.1177/1550147718769263.
Pełny tekst źródłaLiu, Bing, Xiaohan Chen, Enyi Li i Guigao Le. "Numerical Analysis on Water-Exit Process of Submersible Aerial Vehicle under Different Launch Conditions". Journal of Marine Science and Engineering 11, nr 4 (15.04.2023): 839. http://dx.doi.org/10.3390/jmse11040839.
Pełny tekst źródłaHan, I., i R. M. Brach. "Impact throw model for vehicle-pedestrian collision reconstruction". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 216, nr 6 (1.06.2002): 443–53. http://dx.doi.org/10.1243/09544070260137381.
Pełny tekst źródłaLiu, Hai Jun, Xing Zhi Peng i Zhen Zhu Zou. "Effects of the Launch Speed on Hydrodynamic Force of the Underwater Vehicle Vertical Launch with the Gas Curtain". Advanced Materials Research 625 (grudzień 2012): 84–87. http://dx.doi.org/10.4028/www.scientific.net/amr.625.84.
Pełny tekst źródłaLi, Jiamin, Jian Zheng i Shibo Jing. "Influence of cavitation state and launch angle on water-exit process of vehicle based on moving domain method". Journal of Physics: Conference Series 2472, nr 1 (1.05.2023): 012028. http://dx.doi.org/10.1088/1742-6596/2472/1/012028.
Pełny tekst źródłaBoglis, Ioana-Carmen, i Adrian M. Stoica. "Attenuation of the effects produced by the bending modes of a flexible launch vehicle using second order filters". Technium: Romanian Journal of Applied Sciences and Technology 2, nr 1 (7.01.2020): 48–55. http://dx.doi.org/10.47577/technium.v2i1.41.
Pełny tekst źródła陈, 宜成. "Model Predictive Control Based Launch Vehicle Trajectory Optimization Method". Journal of Aerospace Science and Technology 08, nr 03 (2020): 49–59. http://dx.doi.org/10.12677/jast.2020.83007.
Pełny tekst źródłaKhoshnood, A., J. Roshanian i A. Khaki-Sedig. "Model reference adaptive control for a flexible launch vehicle". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 222, nr 1 (luty 2008): 49–55. http://dx.doi.org/10.1243/09596518jsce469.
Pełny tekst źródłaSim, Chang-Hoon, Geun-Sang Kim, Dong-Goen Kim, In-Gul Kim, Soon-Hong Park i Jae-Sang Park. "Experimental and Computational Modal Analyses for Launch Vehicle Models considering Liquid Propellant and Flange Joints". International Journal of Aerospace Engineering 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/4865010.
Pełny tekst źródłaHomsup, Pinyochon, Narathee, Weng i Homsup. "Dynamic Simulation of a UAV Moving on Launcher". Proceedings 39, nr 1 (21.01.2020): 26. http://dx.doi.org/10.3390/proceedings2019039026.
Pełny tekst źródłaKim, J. B., J. S. Sim, S. G. Lee, S. J. Shin, J. H. Park i Y. Kim. "Integrated one-dimensional dynamic analysis methodology for space launch vehicles reflecting liquid components". Aeronautical Journal 121, nr 1243 (11.07.2017): 1217–38. http://dx.doi.org/10.1017/aer.2017.56.
Pełny tekst źródłaBARAUSKAS, Rimantas, Algimantas FEDARAVIČIUS i Karolis JASAS. "Structural Model Analysis for the Laser Guided Mobile Short-Range Air Defence System". Problems of Mechatronics Armament Aviation Safety Engineering 14, nr 1 (31.03.2023): 9–22. http://dx.doi.org/10.5604/01.3001.0016.2957.
Pełny tekst źródłaKrivenko, Olga, i Petro Lizunov. "Vibrations of launch vehicle fairings with conical shape". Strength of Materials and Theory of Structures, nr 109 (11.11.2022): 66–71. http://dx.doi.org/10.32347/2410-2547.2022.109.66-71.
Pełny tekst źródłaGong, Zheng, Zian Wang, Chengchuan Yang, Zhengxue Li, Mingzhe Dai i Chengxi Zhang. "Performance Analysis on the Small-Scale Reusable Launch Vehicle". Symmetry 14, nr 9 (6.09.2022): 1862. http://dx.doi.org/10.3390/sym14091862.
Pełny tekst źródłaCole, Stanley R., i Thomas L. Henning. "Buffet response of a hammerhead launch vehicle wind-tunnel model". Journal of Spacecraft and Rockets 29, nr 3 (maj 1992): 379–85. http://dx.doi.org/10.2514/3.26362.
Pełny tekst źródłaSarae, Wataru, Keita Terashima, Seiji Tsutsumi, Tetsuo Hiraiwa i Hiroaki Kobayashi. "Results of subscale model acoustic tests for H3 launch vehicle". Journal of the Acoustical Society of America 142, nr 4 (październik 2017): 2490. http://dx.doi.org/10.1121/1.5014087.
Pełny tekst źródłaGuo, Zhong Quan, Jian Xia Liu i Wen Cai Luo. "Parametric Modeling and Simulation for Aerodynamic Design of Launch Vehicle". Applied Mechanics and Materials 101-102 (wrzesień 2011): 697–701. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.697.
Pełny tekst źródłaChen, Haipeng, Kang Chen i Wenxing Fu. "Memory Augmented Neural Network-Based Intelligent Adaptive Fault Tolerant Control for a Class of Launch Vehicles Using Second-Order Disturbance Observer". Mathematical Problems in Engineering 2021 (1.07.2021): 1–12. http://dx.doi.org/10.1155/2021/9961278.
Pełny tekst źródłaHassani, Mehdi, Jafar Roshanian i A. Majid Khoshnood. "A reliable analytical navigation system based on symmetrical dynamic behavior of control channels". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, nr 1 (2.10.2016): 190–99. http://dx.doi.org/10.1177/0954410016664917.
Pełny tekst źródłaWang, Tao, Ze Huan Huang, Hui Zhang i Bin Zheng. "The Displacement Measurement of Ground Wind Loads for Launch Vehicle". Applied Mechanics and Materials 568-570 (czerwiec 2014): 100–105. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.100.
Pełny tekst źródłaRagul, MS, Vishnu Prakash, G. Arshiya i Ankit Kumar Mishra. "Theoretical Model Study on Chemical Compositions Affecting the Space Launch Vehicles". 1 8, nr 1 (1.02.2022): 35–38. http://dx.doi.org/10.46632/jemm/8/1/6.
Pełny tekst źródłaJin, Yinxiang, Dawei Wang, Zhangxia Guo, Libo Zou, Jiahao Chen i Jingyun Xie. "Research on Electromagnetic Protection Characteristics of Vehicle-mounted Electromagnetic Railgun Launcher Lifetime Counting Device". Journal of Physics: Conference Series 2478, nr 12 (1.06.2023): 122021. http://dx.doi.org/10.1088/1742-6596/2478/12/122021.
Pełny tekst źródłaZhao, Chen-geng, Zhong-yi Sun, Yi-fei Su, Yi-chen Wang i Gui-gao Le. "Study on bottom thermal environment of launch vehicle during high altitude flight". Journal of Physics: Conference Series 2364, nr 1 (1.11.2022): 012029. http://dx.doi.org/10.1088/1742-6596/2364/1/012029.
Pełny tekst źródłaXue, Guo Hu, Jun Shan Mu, Hui Fen Li, Li Wei Zhu i Yang Liu. "Initial Orbit Determination Using Single Frequency GPS Measurements of Launch Vehicle". Applied Mechanics and Materials 599-601 (sierpień 2014): 964–69. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.964.
Pełny tekst źródłaXu, Erbao, Yan Li, Lining Peng, Yuxi Li i Mingshun Yang. "On-Line Interpretation and Real-Time Diagnosis of Rocket’s Single Equipment". Mathematical Problems in Engineering 2021 (12.03.2021): 1–12. http://dx.doi.org/10.1155/2021/6671403.
Pełny tekst źródłaDuraffourg, Elodie, Laurent Burlion i Tarek Ahmed-Ali. "Finite-time observer-based backstepping control of a flexible launch vehicle". Journal of Vibration and Control 24, nr 8 (1.09.2016): 1535–50. http://dx.doi.org/10.1177/1077546316664021.
Pełny tekst źródłaBakhtin, Aleksandr Georgievich, i Vasilii Aleksandrovich Titov. "VERIFICATION OF A COMPUTATIONAL DYNAMIC MODEL OF A LAUNCH VEHICLE STRUCTURE". TsAGI Science Journal 49, nr 1 (2018): 93–103. http://dx.doi.org/10.1615/tsagiscij.2018026788.
Pełny tekst źródłaSalton, Alexandria R., Michael M. James, Matthew F. Calton, Kent L. Gee, Reese D. Rasband, Daniel J. Novakovich i Brent O. Reichman. "Launch vehicle acoustic measurements for community noise model development and validation". Journal of the Acoustical Society of America 144, nr 3 (wrzesień 2018): 1673. http://dx.doi.org/10.1121/1.5067452.
Pełny tekst źródłaPark, Seoryong, Kiseop Yoon, Jeongwoo Ko, HanAhChim Choung, Seokjong Jang i Soogab Lee. "Integrated simulation model for prediction of acoustic environment of launch vehicle". Journal of the Acoustical Society of America 140, nr 4 (październik 2016): 3248. http://dx.doi.org/10.1121/1.4970276.
Pełny tekst źródłaFedaravičius, Algimantas, Karolis Jasas, Rimvydas Gaidys i Kęstutis Pilkauskas. "Dynamics of the Missile Launch from the Very Short-Range Mobile Firing Unit". Shock and Vibration 2023 (1.04.2023): 1–10. http://dx.doi.org/10.1155/2023/3082704.
Pełny tekst źródłaLi, Jiaxin, Donghui Wang i Weihua Zhang. "Surrogate-Based Optimization Design for Air-Launched Vehicle Using Iterative Terminal Guidance". Aerospace 9, nr 6 (1.06.2022): 300. http://dx.doi.org/10.3390/aerospace9060300.
Pełny tekst źródłaChelaru, Teodor Viorel, i Adrian Chelaru. "Mathematical Model and Performance Evaluation for a Small Orbital Launcher". Applied Mechanics and Materials 772 (lipiec 2015): 388–94. http://dx.doi.org/10.4028/www.scientific.net/amm.772.388.
Pełny tekst źródłaZhao, Liangyu, i Yi Jiang. "A study on launch site ground of vehicle-mounted missile based on elastic layer theory". Advances in Mechanical Engineering 10, nr 10 (październik 2018): 168781401880732. http://dx.doi.org/10.1177/1687814018807322.
Pełny tekst źródłaJayaprasad, G., P. P. Dhanlakshmi i S. Hemachandran. "Analysis of electrical discontinuity problem in MLB using Ishikawa model". Circuit World 42, nr 4 (7.11.2016): 201–6. http://dx.doi.org/10.1108/cw-08-2016-0036.
Pełny tekst źródłaAprovitola, Andrea, Luigi Iuspa i Antonio Viviani. "Thermal Protection System Design of a Reusable Launch Vehicle Using Integral Soft Objects". International Journal of Aerospace Engineering 2019 (28.04.2019): 1–14. http://dx.doi.org/10.1155/2019/6069528.
Pełny tekst źródłaEscartí-Guillem, Mara S., Luis M. García-Raffi i Sergio Hoyas. "URANS Analysis of a Launch Vehicle Aero-Acoustic Environment". Applied Sciences 12, nr 7 (25.03.2022): 3356. http://dx.doi.org/10.3390/app12073356.
Pełny tekst źródłaKim, Hong-Rae, Dong-Seo Yoo, Jong-Kwon Choi i Young-Keun Chang. "Cost Model for Annual Cost Spread Estimation of Space Launch Vehicle Development". Journal of the Korean Society for Aeronautical & Space Sciences 39, nr 6 (1.06.2011): 576–84. http://dx.doi.org/10.5139/jksas.2011.39.6.576.
Pełny tekst źródłaKrishnan, Ranjani, i V. R. Lalithambika. "Modeling and Validating Launch Vehicle Onboard Software Using the SPIN Model Checker". Journal of Aerospace Information Systems 17, nr 12 (grudzień 2020): 695–99. http://dx.doi.org/10.2514/1.i010876.
Pełny tekst źródłaJia, Juhong, Debin Fu i Zepeng He. "Aerodynamic interactions of a Reusable Launch Vehicle model with different nose configurations". Acta Astronautica 177 (grudzień 2020): 58–65. http://dx.doi.org/10.1016/j.actaastro.2020.07.022.
Pełny tekst źródłaSun, Wei, Yu Long Hua i Guo Qiang Liu. "A Test Study of Wet Dual Clutch Transmission during Vehicle Launch". Advanced Materials Research 490-495 (marzec 2012): 86–90. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.86.
Pełny tekst źródła