Artykuły w czasopismach na temat „Lasers à Cascade Interbande”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Lasers à Cascade Interbande.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Lasers à Cascade Interbande”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt i Igor Vurgaftman. "The Interband Cascade Laser". Photonics 7, nr 3 (15.09.2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Pełny tekst źródła
Streszczenie:
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
Style APA, Harvard, Vancouver, ISO itp.
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li i Fengqi Liu. "Interband cascade lasers with short electron injector". Chinese Optics Letters 20, nr 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Horiuchi, Noriaki. "Interband cascade lasers". Nature Photonics 9, nr 8 (30.07.2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim i in. "Interband cascade lasers". Journal of Physics D: Applied Physics 48, nr 12 (11.03.2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ryczko, Krzysztof, i Grzegorz Sęk. "Towards unstrained interband cascade lasers". Applied Physics Express 11, nr 1 (4.12.2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins i J. F. Klem. "Long wavelength interband cascade lasers". Applied Physics Letters 120, nr 9 (28.02.2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Pełny tekst źródła
Streszczenie:
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
Style APA, Harvard, Vancouver, ISO itp.
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour i Geof C. Aers. "InAs-Based Interband Cascade Lasers". IEEE Journal of Selected Topics in Quantum Electronics 25, nr 6 (listopad 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman i J. R. Meyer. "Room temperature interband cascade lasers". Physics Procedia 3, nr 2 (styczeń 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang i in. "Strain mapping in interband cascade lasers". AIP Advances 12, nr 1 (1.01.2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth i Gottfried Strasser. "Substrate-emitting ring interband cascade lasers". Applied Physics Letters 111, nr 17 (23.10.2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Trofimov, I. E., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. L. Merritt, I. Vurgaftman, J. R. Meyer i L. T. Le. "Interband cascade lasers with long lifetimes". Applied Optics 54, nr 32 (4.11.2015): 9441. http://dx.doi.org/10.1364/ao.54.009441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Bradshaw, J. L., J. D. Bruno, J. T. Pham, D. E. Wortman i Rui Q. Yang. "Midinfrared type-II interband cascade lasers". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, nr 3 (2000): 1628. http://dx.doi.org/10.1116/1.591441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Yang, Rui Q., J. D. Bruno, J. L. Bradshaw, J. T. Pham i D. E. Wortman. "Interband cascade lasers: progress and challenges". Physica E: Low-dimensional Systems and Nanostructures 7, nr 1-2 (kwiecień 2000): 69–75. http://dx.doi.org/10.1016/s1386-9477(99)00280-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Jiang, Yuchao, Lu Li, Zhaobing Tian, Hao Ye, Lihua Zhao, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson i Kamjou Mansour. "Electrically widely tunable interband cascade lasers". Journal of Applied Physics 115, nr 11 (21.03.2014): 113101. http://dx.doi.org/10.1063/1.4865941.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Ryczko, Krzysztof, Janusz Andrzejewski i Grzegorz Sęk. "Towards Interband Cascade lasers on InP Substrate". Materials 15, nr 1 (22.12.2021): 60. http://dx.doi.org/10.3390/ma15010060.

Pełny tekst źródła
Streszczenie:
In this study, we propose designs of an interband cascade laser (ICL) active region able to emit in the application-relevant mid infrared (MIR) spectral range and to be grown on an InP substrate. This is a long-sought solution as it promises a combination of ICL advantages with mature and cost-effective epitaxial technology of fabricating materials and devices with high structural and optical quality, when compared to standard approaches of growing ICLs on GaSb or InAs substrates. Therefore, we theoretically investigate a family of type II, “W”-shaped quantum wells made of InGaAs/InAs/GaAsSb with different barriers, for a range of compositions assuring the strain levels acceptable from the growth point of view. The calculated band structure within the 8-band k·p approximation showed that the inclusion of a thin InAs layer into such a type II system brings a useful additional tuning knob to tailor the electronic confined states, optical transitions’ energy and their intensity. Eventually, it allows achieving the emission wavelengths from below 3 to at least 4.6 μm, while still keeping reasonably high gain when compared to the state-of-the-art ICLs. We demonstrate a good tunability of both the emission wavelength and the optical transitions’ oscillator strength, which are competitive with other approaches in the MIR. This is an original solution which has not been demonstrated so far experimentally. Such InP-based interband cascade lasers are of crucial application importance, particularly for the optical gas sensing.
Style APA, Harvard, Vancouver, ISO itp.
16

Meyer, Jerry R., Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley i Igor Vurgaftman. "Interband Cascade Photonic Integrated Circuits on Native III-V Chip". Sensors 21, nr 2 (16.01.2021): 599. http://dx.doi.org/10.3390/s21020599.

Pełny tekst źródła
Streszczenie:
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.
Style APA, Harvard, Vancouver, ISO itp.
17

Zhang Yi, 张一, 杨成奥 Yang Cheng''ao, 尚金铭 Shang Jinming, 陈益航 Chen Yihang, 王天放 Wang Tianfang, 张宇 Zhang Yu, 徐应强 Xu Yingqiang, 刘冰 Liu Bing i 牛智川 Niu Zhichuan. "Research Progress of Semiconductor Interband Cascade Lasers". Acta Optica Sinica 41, nr 1 (2021): 0114004. http://dx.doi.org/10.3788/aos202141.0114004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Chen Junjing, 陈君景, 王一丁 Wang Yiding i 曹峰 Cao Feng. "Mid-Infrared Type-II Interband Cascade Lasers". Laser & Optoelectronics Progress 45, nr 3 (2008): 19–24. http://dx.doi.org/10.3788/lop20084503.0019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Soibel, A., M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang i H. C. Liu. "High-speed operation of interband cascade lasers". Electronics Letters 45, nr 5 (2009): 264. http://dx.doi.org/10.1049/el:20090079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Vurgaftman, Igor, William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, J. Ryan Lindle, Charles D. Merritt, Joshua Abell i Jerry R. Meyer. "Mid-IR Type-II Interband Cascade Lasers". IEEE Journal of Selected Topics in Quantum Electronics 17, nr 5 (wrzesień 2011): 1435–44. http://dx.doi.org/10.1109/jstqe.2011.2114331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yang, R. Q., J. L. Bradshaw, J. D. Bruno, J. T. Pham i D. E. Wortman. "Mid-infrared type-II interband cascade lasers". IEEE Journal of Quantum Electronics 38, nr 6 (czerwiec 2002): 559–68. http://dx.doi.org/10.1109/jqe.2002.1005406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Yang, R. Q., C.-H. Lin, B. H. Yang, D. Zhang, S. J. Murry, S. S. Pei, C. L. Felix i in. "High Power Mid-IR Interband Cascade Lasers". Optics and Photonics News 8, nr 12 (1.12.1997): 26. http://dx.doi.org/10.1364/opn.8.12.000026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Li, Lu, Lihua Zhao, Yuchao Jiang, Rui Q. Yang, Joel C. Keay, Tetsuya D. Mishima, Michael B. Santos i Matthew B. Johnson. "Single-waveguide dual-wavelength interband cascade lasers". Applied Physics Letters 101, nr 17 (22.10.2012): 171118. http://dx.doi.org/10.1063/1.4764910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Dallner, Matthias, Julian Scheuermann, Lars Nähle, Marc Fischer, Johannes Koeth, Sven Höfling i Martin Kamp. "InAs-based distributed feedback interband cascade lasers". Applied Physics Letters 107, nr 18 (2.11.2015): 181105. http://dx.doi.org/10.1063/1.4935076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Deng, Yu, Bin-Bin Zhao, Xing-Guang Wang i Cheng Wang. "Narrow linewidth characteristics of interband cascade lasers". Applied Physics Letters 116, nr 20 (18.05.2020): 201101. http://dx.doi.org/10.1063/5.0006823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ryczko, Krzysztof, Agata Zielińska i Grzegorz Sęk. "Interband Cascade Active Region with Ultra-Broad Gain in the Mid-Infrared Range". Materials 14, nr 5 (27.02.2021): 1112. http://dx.doi.org/10.3390/ma14051112.

Pełny tekst źródła
Streszczenie:
The optical gain spectrum has been investigated theoretically for various designs of active region based on InAs/GaInSb quantum wells—i.e., a type II material system employable in interband cascade lasers (ICLs) or optical amplifiers operating in the mid-infrared spectral range. The electronic properties and optical responses have been calculated using the eight-band k·p theory, including strain and external electric fields, to simulate the realistic conditions occurring in operational devices. The results show that intentionally introducing a slight nonuniformity between two subsequent stages of a cascaded device via the properly engineered modification of the type II quantum wells of the active area offers the possibility to significantly broaden the gain function. A −3 dB gain width of 1 µm can be reached in the 3–5 µm range, which is almost an order of magnitude larger than that of any previously reported ICLs. This is a property strongly demanded in many gas-sensing or free-space communication applications, and it opens a way for a new generation of devices in the mid-infrared range, such as broadly tunable single-mode lasers, mode-locked lasers for laser-based spectrometers, and optical amplifiers or superluminescent diodes which do not exist beyond 3 µm yet.
Style APA, Harvard, Vancouver, ISO itp.
27

NING Chao, 宁超, 孙瑞轩 SUN Ruixuan, 于天 YU Tian, 刘舒曼 LIU Shuman, 张锦川 ZHANG Jinchuan, 卓宁 ZHUO Ning, 王利军 WANG Lijun i in. "带间级联激光器电子注入区优化研究(特邀)". ACTA PHOTONICA SINICA 51, nr 2 (2022): 0251208. http://dx.doi.org/10.3788/gzxb20225102.0251208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Fordyce, J. A. M., D. A. Diaz-Thomas, L. O'Faolain, A. N. Baranov, T. Piwonski i L. Cerutti. "Single-mode interband cascade laser with a slotted waveguide". Applied Physics Letters 121, nr 21 (21.11.2022): 211102. http://dx.doi.org/10.1063/5.0120460.

Pełny tekst źródła
Streszczenie:
The design of a single-mode interband cascade laser (ICL) using a slotted waveguide is presented. This technique was explored as an inexpensive alternative to distributed feedback lasers since standard photolithography can be used in fabrication and complex techniques, such as e-beam lithography, re-growth steps, and/or metal gratings, can be avoided. The design of slotted waveguides must be carefully simulated before fabrication to ensure the efficacy of the photolithography masks with each ICL growth. Limitations and the behavior of key design parameters are discussed. Single-mode emission was achieved for certain temperature and injected current conditions, validating the operation of an Sb based slotted laser. The slotted ICLs were emitting from a single longitudinal mode at 3.5 μm and 2 mW of power per facet output at 20 °C with threshold currents around 80 mA.
Style APA, Harvard, Vancouver, ISO itp.
29

Biryukov, A. A., B. N. Zvonkov, S. M. Nekorkin, V. Ya Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Marem’yanin i in. "Study of interband cascade lasers with tunneling transition". Bulletin of the Russian Academy of Sciences: Physics 71, nr 1 (styczeń 2007): 96–99. http://dx.doi.org/10.3103/s1062873807010248.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Weih, Robert, Adam Bauer, Martin Kamp i Sven Höfling. "Interband cascade lasers with AlGaAsSb bulk cladding layers". Optical Materials Express 3, nr 10 (6.09.2013): 1624. http://dx.doi.org/10.1364/ome.3.001624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Meyer, J. R., I. Vurgaftman, R. Q. Yang i L. R. Ram-Mohan. "Type-II and type-I interband cascade lasers". Electronics Letters 32, nr 1 (1996): 45. http://dx.doi.org/10.1049/el:19960064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Lin, Yuzhe, Lu Li, Wenxiang Huang, Rui Q. Yang, James A. Gupta i Wanhua Zheng. "Quasi-Fermi Level Pinning in Interband Cascade Lasers". IEEE Journal of Quantum Electronics 56, nr 4 (sierpień 2020): 1–10. http://dx.doi.org/10.1109/jqe.2020.3003081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Myers, Tanya L., Bret D. Cannon, Carolyn S. Brauer, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Charles D. Merritt, William W. Bewley, Igor Vurgaftman i Jerry R. Meyer. "Gamma irradiation of Fabry–Perot interband cascade lasers". Optical Engineering 57, nr 01 (20.09.2017): 1. http://dx.doi.org/10.1117/1.oe.57.1.011016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Jiang, Yuchao, Lu Li, Rui Q. Yang, James A. Gupta, Geof C. Aers, Emmanuel Dupont, Jean-Marc Baribeau, Xiaohua Wu i Matthew B. Johnson. "Type-I interband cascade lasers near 3.2 μm". Applied Physics Letters 106, nr 4 (26.01.2015): 041117. http://dx.doi.org/10.1063/1.4907326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Borri, Simone, Mario Siciliani de Cumis, Silvia Viciani, Francesco D’Amato i Paolo De Natale. "Unveiling quantum-limited operation of interband cascade lasers". APL Photonics 5, nr 3 (1.03.2020): 036101. http://dx.doi.org/10.1063/1.5139483.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Canedy, C. L., W. W. Bewley, C. S. Kim, M. Kim, J. R. Lindle, I. Vurgaftman i J. R. Meyer. "cw midinfrared “W” diode and interband cascade lasers". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, nr 3 (2006): 1613. http://dx.doi.org/10.1116/1.2192533.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling i A. Forchel. "Mid infrared interband cascade lasers for sensing applications". Applied Physics B 100, nr 2 (6.02.2010): 275–78. http://dx.doi.org/10.1007/s00340-010-3899-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zhao, Xuyi, Chunfang Cao, Antian Du, Wenfu Yu, Shixian Han, Ruotao Liu, Yuanyu Chen i in. "High Performance Interband Cascade Lasers With AlGaAsSb Cladding Layers". IEEE Photonics Technology Letters 34, nr 5 (1.03.2022): 291–94. http://dx.doi.org/10.1109/lpt.2022.3153334.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zhaobing Tian, R. Q. Yang, T. D. Mishima, M. B. Santos i M. B. Johnson. "Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$m". IEEE Photonics Technology Letters 21, nr 21 (listopad 2009): 1588–90. http://dx.doi.org/10.1109/lpt.2009.2030686.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Bradshaw, J. L., J. D. Bruno, D. E. Wortman, R. Q. Yang i J. T. Pham. "Continuous wave operation of type-II interband cascade lasers". IEE Proceedings - Optoelectronics 147, nr 3 (1.06.2000): 177–80. http://dx.doi.org/10.1049/ip-opt:20000299.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Sterczewski, Lukasz A., Jonas Westberg, Mahmood Bagheri, Clifford Frez, Igor Vurgaftman, Chadwick L. Canedy, William W. Bewley i in. "Mid-infrared dual-comb spectroscopy with interband cascade lasers". Optics Letters 44, nr 8 (15.04.2019): 2113. http://dx.doi.org/10.1364/ol.44.002113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Mansour, K., Y. Qiu, C. J. Hill, A. Soibel i R. Q. Yang. "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures". Electronics Letters 42, nr 18 (2006): 1034. http://dx.doi.org/10.1049/el:20062442.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Du Zhenhui, 杜振辉, 韩瑞炎 Han Ruiyan, 王晓雨 Wang Xiaoyu, 王拴棵 Wang Shuangke, 孟硕 Mengshuo i 李金义 Li Jinyi. "Interband Cascade Lasers Based Trace Gas Sensing: A Review". Chinese Journal of Lasers 45, nr 9 (2018): 0911006. http://dx.doi.org/10.3788/cjl201845.0911006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Scheuermann, Julian, Robert Weih, Michael von Edlinger, Lars Nähle, Marc Fischer, Johannes Koeth, Martin Kamp i Sven Höfling. "Single-mode interband cascade lasers emitting below 2.8 μm". Applied Physics Letters 106, nr 16 (20.04.2015): 161103. http://dx.doi.org/10.1063/1.4918985.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Jiang, Yuchao, Lu Li, Hao Ye, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson, David Jui-Yang Feng i Fow-Sen Choa. "InAs-Based Single-Mode Distributed Feedback Interband Cascade Lasers". IEEE Journal of Quantum Electronics 51, nr 9 (wrzesień 2015): 1–7. http://dx.doi.org/10.1109/jqe.2015.2470534.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Zuowei Yin, Yuchao Jiang, Zhaobing Tian, Rui Q. Yang, T. D. Mishima, M. B. Santos i M. B. Johnson. "Far-Field Patterns of Plasmon Waveguide Interband Cascade Lasers". IEEE Journal of Quantum Electronics 47, nr 11 (listopad 2011): 1414–19. http://dx.doi.org/10.1109/jqe.2011.2168812.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ryczko, K., i G. Sęk. "Polarization-independent gain in mid-infrared interband cascade lasers". AIP Advances 6, nr 11 (listopad 2016): 115020. http://dx.doi.org/10.1063/1.4968190.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Meyer, Jerry. "Special Section Guest Editorial: Quantum and Interband Cascade Lasers". Optical Engineering 49, nr 11 (1.11.2010): 111101. http://dx.doi.org/10.1117/1.3512992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hill, Cory J., Baohua Yang i Rui Q. Yang. "Low-threshold interband cascade lasers operating above room temperature". Physica E: Low-dimensional Systems and Nanostructures 20, nr 3-4 (styczeń 2004): 486–90. http://dx.doi.org/10.1016/j.physe.2003.08.064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Canedy, C. L., C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman i J. R. Meyer. "High-power, narrow-ridge, mid-infrared interband cascade lasers". Journal of Crystal Growth 301-302 (kwiecień 2007): 931–34. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii