Artykuły w czasopismach na temat „Laser cooling and trapping”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Laser cooling and trapping.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Laser cooling and trapping”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Stenholm, S. "Laser cooling and trapping". European Journal of Physics 9, nr 4 (1.10.1988): 242–49. http://dx.doi.org/10.1088/0143-0807/9/4/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vredenbregt, E. J. D., i K. A. H. van Leeuwen. "Laser cooling and trapping visualized". American Journal of Physics 71, nr 8 (sierpień 2003): 760–65. http://dx.doi.org/10.1119/1.1578063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

McCarron, Daniel. "Laser cooling and trapping molecules". Journal of Physics B: Atomic, Molecular and Optical Physics 51, nr 21 (18.10.2018): 212001. http://dx.doi.org/10.1088/1361-6455/aadfba.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Georgescu, Iulia. "From trapping to laser-cooling antihydrogen". Nature Reviews Physics 3, nr 4 (kwiecień 2021): 237. http://dx.doi.org/10.1038/s42254-021-00308-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kenfack, S. C., C. M. Ekengoue, A. J. Fotué, F. C. Fobasso, G. N. Bawe i L. C. Fai. "Laser cooling and trapping of polariton". Computational Condensed Matter 11 (czerwiec 2017): 47–54. http://dx.doi.org/10.1016/j.cocom.2017.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

BJORKHOLM, J., S. CHU, A. CABLE i A. ASHKIN. "Laser cooling and trapping of atoms". Optics News 12, nr 12 (1.12.1986): 18. http://dx.doi.org/10.1364/on.12.12.000018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lin, Zhong, Kazuko Shimizu, Mingsheng Zhan, Fujio Shimizu i Hiroshi Takuma. "Laser Cooling and Trapping of Li". Japanese Journal of Applied Physics 30, Part 2, No. 7B (15.07.1991): L1324—L1326. http://dx.doi.org/10.1143/jjap.30.l1324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Foot, C. J. "Laser cooling and trapping of atoms". Contemporary Physics 32, nr 6 (listopad 1991): 369–81. http://dx.doi.org/10.1080/00107519108223712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Phillips, W. D. "Laser-cooling and trapping neutral atoms". Annales de Physique 10, nr 6 (1985): 717–32. http://dx.doi.org/10.1051/anphys:01985001006071700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Metcalf, H. J., i P. van der Straten. "Laser cooling and trapping of atoms". Journal of the Optical Society of America B 20, nr 5 (1.05.2003): 887. http://dx.doi.org/10.1364/josab.20.000887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

SHIMIZU, Kazuko. "Laser Cooling and Trapping of Neutral Atoms." SHINKU 38, nr 10 (1995): 847–53. http://dx.doi.org/10.3131/jvsj.38.847.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Chen, Tao, i Bo Yan. "Laser cooling and trapping of polar molecules". Acta Physica Sinica 68, nr 4 (2019): 043701. http://dx.doi.org/10.7498/aps.68.20181655.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

GILBERT, SARAH L., i CARL E. WIEMAN. "LASER COOLING AND TRAPPING FOR THE MASSES". Optics and Photonics News 4, nr 7 (1.07.1993): 8. http://dx.doi.org/10.1364/opn.4.7.000008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Shimizu, Yukiko, i Hiroyuki Sasada. "Mechanical force in laser cooling and trapping". American Journal of Physics 66, nr 11 (listopad 1998): 960–67. http://dx.doi.org/10.1119/1.19006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Adams, C. S., i E. Riis. "Laser cooling and trapping of neutral atoms". Progress in Quantum Electronics 21, nr 1 (styczeń 1997): 1–79. http://dx.doi.org/10.1016/s0079-6727(96)00006-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Metcalf, Harold. "Laser cooling and electromagnetic trapping of atoms". Optics News 13, nr 3 (1.03.1987): 6. http://dx.doi.org/10.1364/on.13.3.000006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Shimizu, Fujio. "Laser cooling and trapping of neutral atoms". Hyperfine Interactions 74, nr 1-4 (październik 1992): 259–67. http://dx.doi.org/10.1007/bf02398635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Xu, Xin-ye, Wen-li Wang, Qing-hong Zhou, Guo-hui Li, Hai-ling Jiang, Lin-fang Chen, Jie Ye i in. "Laser cooling and trapping of ytterbium atoms". Frontiers of Physics in China 4, nr 2 (czerwiec 2009): 160–64. http://dx.doi.org/10.1007/s11467-009-0033-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Knothe, Christian, i Ulrich Oechsner. "Fiber optics for laser cooling and trapping". Optik & Photonik 6, nr 2 (maj 2011): 49–51. http://dx.doi.org/10.1002/opph.201190332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Nemova, Galina. "Laser Cooling and Trapping of Rare-Earth-Doped Particles". Applied Sciences 12, nr 8 (8.04.2022): 3777. http://dx.doi.org/10.3390/app12083777.

Pełny tekst źródła
Streszczenie:
This review focuses on optical refrigeration with the anti-Stokes fluorescence of rare-earth (RE)-doped low-phonon micro- and nanocrystals. Contrary to bulk samples, where the thermal energy is contained in internal vibrational modes (phonons), the thermal energy of nanoparticles is contained in both the translational motion and internal vibrational (phonons) modes of the sample. Much theoretical and experimental research is currently devoted to the laser cooling of nanoparticles. In the majority of the related work, only the translational energy of the particles has been suppressed. In this review, the latest achievements in hybrid optical refrigeration of RE-doped low-phonon micro- and nanoparticles are presented. Hybrid cooling permits the suppression of not only the translational energy of the RE-doped particles, but also their internal vibrational phonon thermal energy. Laser cooling of nanoparticles is not a simple task. Mie resonances can be used to enhance laser cooling with the anti-Stokes fluorescence of nanoparticles made of low-phonon RE-doped solids. Laser-cooled nanoparticles is a promising tool for fundamental quantum-mechanical studies, nonequilibrium thermodynamics, and precision measurements of forces.
Style APA, Harvard, Vancouver, ISO itp.
21

Kurosu, Takayuki, i Fujio Shimizu. "Laser Cooling and Trapping of Calcium and Strontium". Japanese Journal of Applied Physics 29, Part 2, No. 11 (20.11.1990): L2127—L2129. http://dx.doi.org/10.1143/jjap.29.l2127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shimizu, Fujio, Kazuko Shimizu i Hiroshi Takuma. "Laser cooling and trapping of Ne metastable atoms". Physical Review A 39, nr 5 (1.03.1989): 2758–60. http://dx.doi.org/10.1103/physreva.39.2758.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Cohen-Tannoudji, C. "Laser cooling and trapping of neutral atoms: theory". Physics Reports 219, nr 3-6 (październik 1992): 153–64. http://dx.doi.org/10.1016/0370-1573(92)90133-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kurosu, Takayuki, i Fujio Shimizu. "Laser Cooling and Trapping of Alkaline Earth Atoms". Japanese Journal of Applied Physics 31, Part 1, No. 3 (15.03.1992): 908–12. http://dx.doi.org/10.1143/jjap.31.908.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Phillips, William D., John V. Prodan i Harold J. Metcalf. "Laser cooling and electromagnetic trapping of neutral atoms". Journal of the Optical Society of America B 2, nr 11 (1.11.1985): 1751. http://dx.doi.org/10.1364/josab.2.001751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Katori, Hidetoshi, i Fujio Shimizu. "Laser Cooling and Trapping of Argon and Krypton Using Diode Lasers". Japanese Journal of Applied Physics 29, Part 2, No. 11 (20.11.1990): L2124—L2126. http://dx.doi.org/10.1143/jjap.29.l2124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Sun, Hong-Bo, Hironobu Inouye, Yasushi Inouye, Kenji Okamoto i Satoshi Kawata. "Laser-Diode-Tuned Sequential Laser Atom Cooling and Trapping for Nanofabrications". Japanese Journal of Applied Physics 40, Part 2, No. 7A (1.07.2001): L711—L714. http://dx.doi.org/10.1143/jjap.40.l711.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Khabarova, K., S. Strelkin, A. Galyshev, O. Berdasov, A. Gribov, N. Kolachevsky i S. Sluysarev. "Deep Laser Cooling and Trapping of Sr at VNIIFTRI". EPJ Web of Conferences 103 (2015): 06004. http://dx.doi.org/10.1051/epjconf/201510306004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Phillips, William D. "Nobel Lecture: Laser cooling and trapping of neutral atoms". Reviews of Modern Physics 70, nr 3 (1.07.1998): 721–41. http://dx.doi.org/10.1103/revmodphys.70.721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wieman, Carl, Gwenn Flowers i Sarah Gilbert. "Inexpensive laser cooling and trapping experiment for undergraduate laboratories". American Journal of Physics 63, nr 4 (kwiecień 1995): 317–30. http://dx.doi.org/10.1119/1.18072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Ruan, X. L., i M. Kaviany. "Advances in Laser Cooling of Solids". Journal of Heat Transfer 129, nr 1 (18.06.2006): 3–10. http://dx.doi.org/10.1115/1.2360596.

Pełny tekst źródła
Streszczenie:
We review the progress on laser cooling of solids. Laser cooling of ion-doped solids and semiconductors is based on the anti-Stokes fluorescence, where the emitted photons have a mean energy higher than that of the absorbed photons. The thermodynamic analysis shows that this cooling process does not violate the second law, and that the achieved efficiency is much lower than the theoretical limit. Laser cooling has experienced rapid progress in rare-earth-ion doped solids in the last decade, with the temperature difference increasing from 0.3to92K. Further improvements can be explored from the perspectives of materials and structures. Also, theories need to be developed, to provide guidance for searching enhanced cooling performance. Theoretical predictions show that semiconductors may be cooled more than ion-doped solids, but no success in bulk cooling has been achieved yet after a few attempts (due to the fluorescence trapping and nonradiative recombination). Possible solutions are discussed, and net cooling is expected to be realized in the near future.
Style APA, Harvard, Vancouver, ISO itp.
32

Helmerson, Kristian, i William D. Phillips. "Cooling, Trapping and Manipulation of Neutral Atoms and Bose-Einstein Condensates by Electromagnetic Fields". Modern Physics Letters B 14, supp01 (wrzesień 2000): 231–80. http://dx.doi.org/10.1142/s0217984900001567.

Pełny tekst źródła
Streszczenie:
We give a general discussion of the mechanical effects of light, and of laser cooling and trapping techniques. This is followed by a description of experiments in the manipulation of Bose-Einstein condensates with optical laser pulses.
Style APA, Harvard, Vancouver, ISO itp.
33

Wieman, Carl E. "Bose–Einstein Condensation in an Ultracold Gas". International Journal of Modern Physics B 11, nr 28 (10.11.1997): 3281–96. http://dx.doi.org/10.1142/s0217979297001581.

Pełny tekst źródła
Streszczenie:
Bose–Einstein condensation in a gas has now been achieved. Atoms are cooled to the point of condensation using laser cooling and trapping, followed by magnetic trapping and evaporative cooling. These techniques are explained, as well as the techniques by which we observe the cold atom samples. Three different signatures of Bose–Einstein condensation are described. A number of properties of the condensate, including collective excitations, distortions of the wave function by interactions, and the fraction of atoms in the condensate versus temperature, have also been measured.
Style APA, Harvard, Vancouver, ISO itp.
34

Vishnyakova, G. A., E. S. Kalganova, D. D. Sukachev, S. A. Fedorov, A. V. Sokolov, A. V. Akimov, N. N. Kolachevsky i V. N. Sorokin. "Two-stage laser cooling and optical trapping of thulium atoms". Laser Physics 24, nr 7 (13.06.2014): 074018. http://dx.doi.org/10.1088/1054-660x/24/7/074018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Toader, Ovidiu, Sajeev John i Kurt Busch. "Optical trapping, Field enhancement and Laser cooling in photonic crystals". Optics Express 8, nr 3 (29.01.2001): 217. http://dx.doi.org/10.1364/oe.8.000217.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Mellish, Angela S., i Andrew C. Wilson. "A simple laser cooling and trapping apparatus for undergraduate laboratories". American Journal of Physics 70, nr 9 (wrzesień 2002): 965–71. http://dx.doi.org/10.1119/1.1477435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Vilshanskaya, E. V., S. A. Saakyan, V. A. Sautenkov i B. B. Zelener. "The setup for laser cooling and trapping of calcium atoms". Journal of Physics: Conference Series 1147 (styczeń 2019): 012097. http://dx.doi.org/10.1088/1742-6596/1147/1/012097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Shao-Kai, Wang, Wang Qiang, Lin Yi-Ge, Wang Min-Ming, Lin Bai-Ke, Zang Er-Jun, Li Tian-Chu i Fang Zhan-Jun. "Cooling and Trapping 88 Sr Atoms with 461 nm Laser". Chinese Physics Letters 26, nr 9 (wrzesień 2009): 093202. http://dx.doi.org/10.1088/0256-307x/26/9/093202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Morigi, G., B. Zambon, N. Leinfellner i E. Arimondo. "Scaling laws in velocity-selective coherent-population-trapping laser cooling". Physical Review A 53, nr 4 (1.04.1996): 2616–26. http://dx.doi.org/10.1103/physreva.53.2616.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Rapol, U. D., A. Krishna, A. Wasan i V. Natarajan. "Laser cooling and trapping of Yb from a thermal source". European Physical Journal D - Atomic, Molecular and Optical Physics 29, nr 3 (1.06.2004): 409–14. http://dx.doi.org/10.1140/epjd/e2004-00041-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wang, Hui Bo. "Experiment and Analysis System without Modulation Locked Fiber Grating System". Applied Mechanics and Materials 513-517 (luty 2014): 3886–89. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3886.

Pełny tekst źródła
Streszczenie:
High stability of semiconductor lasers have been shown useful in many applications areas,[such as optical communication, high-resolution spectroscopy quantum metrology, laser cooling and trapping[. With the rapid development of fiber optic dense wavelength division multiplexing system, we require laser source with high frequency stability in 1.5μm band. In this paper It is clear that temperature, cavity length and injection current have effects on frequency stability of FBG external cavity semiconductor laser by simulation experiments. Besides that, the frequency stabilization system is adjusted. Therefore, the frequency jitter spectra before and after locking are given and the experimental results are analyzed. The results show that after locking laser the typical frequency jitter is significantly improved comparing with frequency fluctuation in the condition of free running.
Style APA, Harvard, Vancouver, ISO itp.
42

Guo, J., E. Korsunsky i E. Arimondo. "Laser cooling of Rydberg atoms by velocity-selective coherent population trapping". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, nr 3 (czerwiec 1996): 557–69. http://dx.doi.org/10.1088/1355-5111/8/3/018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Korsunsky, E., D. Kosachiov, B. Matisov, Yu Rozhdestvensky, L. Windholz i C. Neureiter. "Quasiclassical analysis of laser cooling by velocity-selective coherent population trapping". Physical Review A 48, nr 2 (1.08.1993): 1419–27. http://dx.doi.org/10.1103/physreva.48.1419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

KWONG, V. H. S. "COOLING AND TRAPPING OF LASER INDUCED MULTIPLY CHARGED IONS OF MOLYBDENUM". Le Journal de Physique Colloques 50, nr C1 (styczeń 1989): C1–413—C1–417. http://dx.doi.org/10.1051/jphyscol:1989149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Vassen, Wim. "Laser cooling and trapping of metastable helium: towards Bose–Einstein condensation". Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, nr 4 (czerwiec 2001): 613–18. http://dx.doi.org/10.1016/s1296-2147(01)01204-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Liu, Xiaochi, Ning Ru, Junyi Duan, Peter Yun, Minghao Yao i Jifeng Qu. "High-performance coherent population trapping clock based on laser-cooled atoms". Chinese Physics B 31, nr 4 (1.03.2022): 043201. http://dx.doi.org/10.1088/1674-1056/ac2d21.

Pełny tekst źródła
Streszczenie:
We present a coherent population trapping clock system based on laser-cooled 87Rb atoms. The clock consists of a frequency-stabilized CPT interrogation laser and a cooling laser as well as a compact magneto-optical trap, a high-performance microwave synthesizer, and a signal detection system. The resonance signal in the continuous wave regime exhibits an absorption contrast of ∼ 50%. In the Ramsey interrogation method, the linewidth of the central fringe is 31.25 Hz. The system achieves fractional frequency stability of 2.4 × 10 − 11 / τ , which goes down to 1.8 × 10−13 at 20000 s. The results validate that cold atom interrogation can improve the long-term frequency stability of coherent population trapping clocks and holds the potential for developing compact/miniature cold atoms clocks.
Style APA, Harvard, Vancouver, ISO itp.
47

Matisov, B. G., i I. E. Mazets. "Limit of laser cooling of atoms by velocity selective coherent population trapping". Journal of Physics B: Atomic, Molecular and Optical Physics 26, nr 21 (14.11.1993): 3795–802. http://dx.doi.org/10.1088/0953-4075/26/21/015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Xu, Liang, Bin Wei, Yong Xia, Lian-Zhong Deng i Jian-Ping Yin. "BaF radical: A promising candidate for laser cooling and magneto-optical trapping". Chinese Physics B 26, nr 3 (marzec 2017): 033702. http://dx.doi.org/10.1088/1674-1056/26/3/033702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Bigelow, N. P. "Low temperature physics without a cryostat: laser cooling and trapping of atoms". Low Temperature Physics 24, nr 2 (luty 1998): 106–13. http://dx.doi.org/10.1063/1.593551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zhang, Kong, Jun He i Junmin Wang. "Single-Pass Laser Frequency Conversion to 780.2 nm and 852.3 nm Based on PPMgO:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers". Applied Sciences 9, nr 22 (17.11.2019): 4942. http://dx.doi.org/10.3390/app9224942.

Pełny tekst źródła
Streszczenie:
We report the preparation of a 780.2 nm and 852.3 nm laser device based on single-pass periodically poled magnesium-oxide-doped lithium niobate (PPMgO:LN) bulk crystals and diode-laser-seeded fiber amplifiers. First, a single-frequency continuously tunable 780.2 nm laser of more than 600 mW from second-harmonic generation (SHG) by a 1560.5 nm laser can be achieved. Then, a 250 mW light at 852.3 nm is generated and achieves an overall conversion efficiency of 4.1% from sum-frequency generation (SFG) by mixing the 1560.5 nm and 1878.0 nm lasers. The continuously tunable range of 780.2 nm and 852.3 nm are at least 6.8 GHz and 9.2 GHz. By employing this laser system, we can conveniently perform laser cooling, trapping and manipulating both rubidium (Rb) and cesium (Cs) atoms simultaneously. This system has promising applications in a cold atoms Rb-Cs two-component interferemeter and in the formation of the RbCs dimer by the photoassociation of cold Rb and Cs atoms confined in a magneto-optical trap.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii