Gotowa bibliografia na temat „Laser cooling and trapping”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Laser cooling and trapping”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Laser cooling and trapping"

1

Stenholm, S. "Laser cooling and trapping". European Journal of Physics 9, nr 4 (1.10.1988): 242–49. http://dx.doi.org/10.1088/0143-0807/9/4/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vredenbregt, E. J. D., i K. A. H. van Leeuwen. "Laser cooling and trapping visualized". American Journal of Physics 71, nr 8 (sierpień 2003): 760–65. http://dx.doi.org/10.1119/1.1578063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

McCarron, Daniel. "Laser cooling and trapping molecules". Journal of Physics B: Atomic, Molecular and Optical Physics 51, nr 21 (18.10.2018): 212001. http://dx.doi.org/10.1088/1361-6455/aadfba.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Georgescu, Iulia. "From trapping to laser-cooling antihydrogen". Nature Reviews Physics 3, nr 4 (kwiecień 2021): 237. http://dx.doi.org/10.1038/s42254-021-00308-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kenfack, S. C., C. M. Ekengoue, A. J. Fotué, F. C. Fobasso, G. N. Bawe i L. C. Fai. "Laser cooling and trapping of polariton". Computational Condensed Matter 11 (czerwiec 2017): 47–54. http://dx.doi.org/10.1016/j.cocom.2017.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

BJORKHOLM, J., S. CHU, A. CABLE i A. ASHKIN. "Laser cooling and trapping of atoms". Optics News 12, nr 12 (1.12.1986): 18. http://dx.doi.org/10.1364/on.12.12.000018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lin, Zhong, Kazuko Shimizu, Mingsheng Zhan, Fujio Shimizu i Hiroshi Takuma. "Laser Cooling and Trapping of Li". Japanese Journal of Applied Physics 30, Part 2, No. 7B (15.07.1991): L1324—L1326. http://dx.doi.org/10.1143/jjap.30.l1324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Foot, C. J. "Laser cooling and trapping of atoms". Contemporary Physics 32, nr 6 (listopad 1991): 369–81. http://dx.doi.org/10.1080/00107519108223712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Phillips, W. D. "Laser-cooling and trapping neutral atoms". Annales de Physique 10, nr 6 (1985): 717–32. http://dx.doi.org/10.1051/anphys:01985001006071700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Metcalf, H. J., i P. van der Straten. "Laser cooling and trapping of atoms". Journal of the Optical Society of America B 20, nr 5 (1.05.2003): 887. http://dx.doi.org/10.1364/josab.20.000887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Laser cooling and trapping"

1

Cooper, Catherine J. "Laser cooling and trapping of atoms". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Townsend, Christopher G. "Laser cooling and trapping of atoms". Thesis, University of Oxford, 1995. http://ora.ox.ac.uk/objects/uuid:6a3d235b-22da-412b-b34b-e064322336d5.

Pełny tekst źródła
Streszczenie:
A detailed experimental and theoretical investigation of a magneto-optical trap for caesium atoms is presented. Particular emphasis has been placed on achieving high spatial number densities and low temperatures. Optimizing both of these together enables efficient evaporative cooling from a conservative trap, a procedure which has recently led to the first observations of Bose-Einstein condensation in a dilute atomic vapour. The behaviour of a magneto-optical trap is nominally determined by four independent parameters: the detuning and intensity of the light field, the magnetic field gradient and the number of trapped atoms. A model is presented which incorporates previous treatments into a single description of the trap that encompasses a wide range of its behaviour. This model was tested quantitatively by measuring the temperature of the cloud and its spatial distribution as a function of the four parameters. The maximum density was found to be limited both by the reabsorption of photons scattered within the cloud and by a reduction of the confining force at small light shifts. The nonlinear variation with position of the restoring force was found to be significant in limiting the number of atoms confined to a high density. A maximum density in phase space (defined as the number of atoms in a box with sides of dimension one thermal de Broglie wavelength) of (1.5 ± 0.5) x 10-5 was observed, with a spatial density of 1.5 x 1011 atoms per cm3. Cold collision losses from a caesium magneto-optical trap have been studied with the purpose of assessing their influence on spatial densities. In contrast to previous measurements of similar quantities, these measurements did not require the use of an ultra-low (< 10-10 Torr) background vapour pressure. The dependence of the cold collision loss coefficient β on the trapping intensity was measured to permit identification of the different cold collision processes. The largest loss rates observed were those due to hyperfine structure-changing collisions, with a coefficient β = (2±1) x 10-10cm3s-1. A study is presented of a modified magneto-optical trap in which a fraction of the population is shelved into a hyperfine level that does not interact with the trapping light. In this so-called "dark" magneto-optical trap, improved densities of nearly 1012cm-3 have been previously reported for sodium. The application of the technique to caesium is not straightforward due to the larger excited state hyperfine splittings. A simple theory for caesium is presented and its main predictions verified by measurements of density, number and temperature. A density of nearly 1012cm,-3 was indeed obtained but at a temperature substantially higher than in the conventional magneto-optical trap.
Style APA, Harvard, Vancouver, ISO itp.
3

Loftus, Thomas Howard. "Laser cooling and trapping of atomic Ytterbium /". view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3018379.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Oregon, 2001.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 263-280). Also available for download via the World Wide Web; free to University of Oregon users.
Style APA, Harvard, Vancouver, ISO itp.
4

Kemp, Stefan Liam. "Laser cooling and optical trapping of Ytterbium". Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12166/.

Pełny tekst źródła
Streszczenie:
This thesis presents the development of an experimental apparatus designed to investigate the ultracold collisional properties for mixtures of Cs and Yb, with a long-term view to the creation of ultracold CsYb molecules via indirect cooling methods. The unpaired electron spin that is inherent to molecules of this form gives rise to a magnetic dipole moment in addition to a ground state electric dipole moment. This enables extra control over molecular interactions and should enable the experimental simulation of spin lattice models. We focus on the implementation of a system designed to controllably laser cool and optically trap Yb. The first step in this system is the production of a magneto-optical trap (MOT) on the triplet 1S0 to 3P1 transition of Yb. With careful control over the cooling beam detunings and power, gravitational-assisted Doppler cooling allows samples of Yb to be prepared at 22 uK. This regime of enhanced Doppler cooling is investigated and proves to be a crucial step to ensuring good transfer of cold Yb to optical traps. The construction and characterisation of single and crossed beam optical dipole traps for Yb are discussed. The single beam optical trap has been used to verify a model for the optical trapping of Yb in its ground state. This trap has also been utilised as a tool for the measurement of the light shift on the 1S0 to 3P1 transition at a wavelength of 1070~nm. In the main experimental sequence, Yb atoms are loaded from the magneto-optical trap into the crossed optical dipole trap, allowing evaporative cooling ramps to quantum degeneracy to be performed. This highly-reproducible system typically forms Bose-Einstein condensates with 2 x 10^5 174Yb atoms. This thesis additionally reports on the progress made towards measurements of the interspecies scattering length for 133Cs and Yb isotopes. We present two approaches that are being developed in tandem: rethermalisation in a conservative trap, and two-photon photoassociation. Progress towards rethermalisation measurements has focussed on developing systems for the efficient transfer of Cs to an optical trap. For photoassociative measurements, a laser system has been developed and tested by producing one-photon photoassociation spectra of Cs2.
Style APA, Harvard, Vancouver, ISO itp.
5

Campbell, Corey Justin. "Trapping, laser cooling, and spectroscopy of Thorium IV". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48973.

Pełny tekst źródła
Streszczenie:
Application of precision laser spectroscopy and optical clock technology to the ground and metastable, first excited state of the ²²⁹Th nucleus at < 10 eV has significant potential for use in optical frequency metrology and tests of variation of fundamental constants. This work is a report on the development of required technologies to realize such a nuclear optical clock with a single, trapped, laser cooled ²²⁹Th³⁺ ion. Creation, trapping, laser cooling, and precision spectroscopy are developed and refined first with the naturally occurring isotope, ²³²Th. These technologies are then extended to laser cooling and precision laser spectroscopy of the electronic structure of ²²⁹Th³⁺. An efficient optical excitation search protocol to directly observe this transition via the electron bridge is proposed. The extraordinarily small systematic clock shifts are estimated and the likely extraordinarily large sensitivity of the clock to variation of the fine structure constant is discussed.
Style APA, Harvard, Vancouver, ISO itp.
6

Norris, Ian. "Laser cooling and trapping of neutral calcium atoms". Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11540.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Maruyama, Reina. "Optical trapping of ytterbium atoms /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Catala, Juan Carlos. "Laser cooling and trapping of argon metastable atomic beam". FIU Digital Commons, 1998. http://digitalcommons.fiu.edu/etd/2083.

Pełny tekst źródła
Streszczenie:
The high velocity of free atoms associated with the thermal motion, together with the velocity distribution of atoms has imposed the ultimate limitation on the precision of ultrahigh resolution spectroscopy. A sample consisting of low velocity atoms would provide a substantial improvement in spectroscopy resolution. To overcome the problem of thermal motion, atomic physicists have pursued two goals; first, the reduction of the thermal motion (cooling); and second, the confinement of the atoms by means of electromagnetic fields (trapping). Cooling carried sufficiently far, eliminates the motional problems, whereas trapping allows for long observation times. In this work the laser cooling and trapping of an argon atomic beam will be discussed. The experiments involve a time-of-flight spectroscopy on metastable argon atoms. Laser deceleration or cooling of atoms is achieved by counter propagating a photon against an atomic beam of metastable atoms. The solution to the Doppler shift problem is achieved using spatially varying magnetic field along the beam path to Zeeman shift the atomic resonance frequency so as to keep the atoms in resonance with a fixed frequency cooling laser. For trapping experiments a Magnetooptical trap (MOT) will be used. The MOT is formed by three pairs of counter-propagating laser beams with mutual opposite circular polarization and a frequency tuned slightly below the center of the atomic resonance and superimposed on a magnetic quadrupole field.
Style APA, Harvard, Vancouver, ISO itp.
9

Shivitz, Robert William. "Techniques in laser cooling and trapping of atomic Ytterbium /". view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3095274.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of Oregon, 2003.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 235-246). Also available for download via the World Wide Web; free to University of Oregon users.
Style APA, Harvard, Vancouver, ISO itp.
10

Guardado-Sanchez, Elmer. "A laser system for trapping and cooling of ⁶Li atoms". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100336.

Pełny tekst źródła
Streszczenie:
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 59-60).
In this thesis, I designed and built a laser system for the trapping and cooling of ⁶Li atoms. The thesis starts explaining a theoretical background of the necessary laser frequencies for the realization of a Zeeman Slower and a 3D MOT. Next it describes the design of the laser system that makes use of a Raman Fiber Amplifier coupled with a Frequency Doubling Cavity and shows the finalized setup. Finally, the thesis delves into the topic of Modulation Transfer Spectroscopy which was used to lock the laser to the D₂ line transition of ⁶Li and shows the spectroscopy setup built for the laser system.
by Elmer Guardado-Sanchez.
S.B.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Laser cooling and trapping"

1

Peter, Van der Straten, red. Laser cooling and trapping. New York: Springer, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Metcalf, Harold J., i Peter van der Straten. Laser Cooling and Trapping. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1470-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Natarajan, Vasant. Laser cooling and trapping. Saarbrücken: LAP LAMBERT Academic Publishing, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1964-, Newbury Nathan, Wieman C. E i American Association of Physics Teachers., red. Trapping of neutral atoms. College Park, MD: American Association of Physics Teachers, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Epstein, Richard I. Laser refrigeration of solids II: 28-29 January 2009, San Jose, California, United States. Bellingham, Wash: SPIE, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Epstein, Richard I., i Mansoor Sheik-Bahae. Laser refrigeration of solids V: 25-26 January 2012, San Francisco, California, United States. Bellingham, Wash: SPIE, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Epstein, Richard I. Laser refrigeration of solids III: 28 January 2010, San Francisco, California, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Epstein, Richard I. Laser refrigeration of solids IV: 26-27 January 2011, San Francisco, California, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yuan zi de ji guang leng que yu xian fu. Beijing Shi: Beijing da xue chu ban she, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Epstein, Richard I. Laser refrigeration of solids: 23-24 January 2008, San Jose, California, USA. Bellingham, Wash: SPIE, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Laser cooling and trapping"

1

Basdevant, Jean-Louis, i Jean Dalibard. "Laser Cooling and Trapping". W The Quantum Mechanics Solver, 199–209. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13724-3_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Basdevant, Jean-Louis, i Jean Dalibard. "Laser Cooling and Trapping". W Advanced Texts in Physics, 217–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04277-9_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Adams, Charles, i Ifan Hughes. "Laser Cooling and Trapping". W Handbook of Laser Technology and Applications, 127–38. Wyd. 2. 2nd edition. | Boca Raton : CRC Press, 2021– |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003130123-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chu, S., M. G. Prentiss, A. E. Cable i J. E. Bjorkholm. "Laser Cooling and Trapping of Atoms". W Laser Spectroscopy VIII, 58–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-47973-4_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Atutov, S. N., R. Calabrese i L. Moi. "“White-Light” Laser Cooling and Trapping". W Trapped Particles and Fundamental Physics, 161–80. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0440-4_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Metcalf, Harold. "Laser Cooling and Magnetic Trapping of Neutral Atoms". W Methods of Laser Spectroscopy, 33–40. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9459-8_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chu, Steven, J. E. Bjorkholm, A. Ashkin, L. Hollberg i Alex Cable. "Cooling and Trapping of Atoms with Laser Light". W Methods of Laser Spectroscopy, 41–49. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9459-8_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Dalibard, J., i C. Cohen-Tannoudji. "Foreword: Laser Cooling and Trapping of Neutral Atoms". W Atomic and Molecular Beams, 43–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56800-8_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wieman, Carl E. "Cooling and trapping of atoms". W Advances in Spectroscopy for Lasers and Sensing, 459. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4789-4_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Helmerson, Kristian. "Laser Cooling and Trapping of Neutral Atoms to Ultralow Temperatures". W Frontiers of Optical Spectroscopy, 427–95. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-2751-6_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Laser cooling and trapping"

1

Barker, P. F. "Laser cooling optically trapped particles". W Optical Trapping Applications. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ota.2011.otmb2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chu, Steven. "Laser cooling and trapping". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tujj1.

Pełny tekst źródła
Streszczenie:
The purpose of this tutorial is to introduce the listener to the rapidly developing field of laser cooling and trapping. Doppler cooling is first discussed followed by the new mechanism of cooling based on ground-state energy level shifts in light fields with polarization gradients. Next, the basic concepts of magnetic traps, optical dipole force traps (optical tweezers), and the magnetooptic trap are considered. Selected uses of these traps and cooling techniques are given to elucidate the broad utility of these techniques.
Style APA, Harvard, Vancouver, ISO itp.
3

Moi, L. "White-light laser cooling and trapping". W 11th International School on Quantum Electronics: Laser Physics and Applications, redaktorzy Peter A. Atanasov i Stefka Cartaleva. SPIE, 2001. http://dx.doi.org/10.1117/12.425126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bjorkholm, J. E., S. Chu, A. Ashkin i A. Cable. "Laser cooling and trapping of atoms". W AIP Conference Proceedings Volume 160. AIP, 1987. http://dx.doi.org/10.1063/1.36784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kasevich, Mark, Kathryn Moler, Erling Riis, Elizabeth Sunderman, David Weiss i Steven Chu. "Applications of laser cooling and trapping". W Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.40985.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

St. John, Demi, Philip J. T. Woodburn, David P. Atherton, Charles W. Thiel, Zeb Barber i Wm Randall Babbitt. "Solid-state laser cooling of optically levitated particles". W Optical Trapping and Optical Micromanipulation XV, redaktorzy Kishan Dholakia i Gabriel C. Spalding. SPIE, 2018. http://dx.doi.org/10.1117/12.2321194.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Orozco, Luis A. "Laser cooling and trapping of neutral atoms". W The XXXI latin american school of physics (Escuela Latinoamericana de fisica, ELAF) new perspectives on quantum mechanics. AIP, 1999. http://dx.doi.org/10.1063/1.58237.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chakraborty, S., A. Banerjee, A. Ray, B. Ray, K. G. Manohar, B. N. Jagatap i P. N. Ghosh. "Laser Cooling and Trapping of Rb Atoms". W Invited Lectures of TC-2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772510_0004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Atutov, S. N., Valerio Biancalana, A. Burchianti, R. Calabrese, L. Corradi, A. Dainelli, V. Guidi i in. "Laser cooling and trapping of radioactive atoms". W 12th International School on Quantum Electronics Laser Physics and Applications, redaktorzy Peter A. Atanasov, Alexander A. Serafetinides i Ivan N. Kolev. SPIE, 2003. http://dx.doi.org/10.1117/12.518887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Phillips, W. D., A. L. Migdall i H. J. Metcalf. "Laser-cooling and electromagnetic trapping of neutral atoms". W AIP Conference Proceedings Volume 146. AIP, 1986. http://dx.doi.org/10.1063/1.35744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Laser cooling and trapping"

1

Chu, Steven. Applications of Laser Cooling and Trapping. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada397410.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Phillips, William D. Laser Cooling and Trapping of Neutral Atoms. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1992. http://dx.doi.org/10.21236/ada253537.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Phillips, William D. Laser Cooling and Trapping of Neutral Atoms. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1992. http://dx.doi.org/10.21236/ada253730.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chu, Steven. Laser Cooling and Trapping of Atoms and Particles. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1992. http://dx.doi.org/10.21236/ada247208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

DeMille, D. Trapping and Cooling of Polar Molecules. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada532782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

DeMille, David. Trapping and Cooling of Polar Molecules. Fort Belvoir, VA: Defense Technical Information Center, luty 2013. http://dx.doi.org/10.21236/ada586058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chu, Steven. Cooling and Trapping of Atoms and Particles. Fort Belvoir, VA: Defense Technical Information Center, luty 1995. http://dx.doi.org/10.21236/ada297849.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chu, Steve. Cooling and Trapping of Atoms and Particles. Fort Belvoir, VA: Defense Technical Information Center, październik 1997. http://dx.doi.org/10.21236/ada337451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chu, Steven. Cooling and Trapping of Atoms and Particles. Fort Belvoir, VA: Defense Technical Information Center, marzec 2001. http://dx.doi.org/10.21236/ada387664.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lu, Zheng-Tian. Laser trapping of 21Na atoms. Office of Scientific and Technical Information (OSTI), wrzesień 1994. http://dx.doi.org/10.2172/10192473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii