Gotowa bibliografia na temat „Laser-assisted synthesis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Laser-assisted synthesis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Laser-assisted synthesis"
W. Xiong, W. Xiong, Y. Gao Y. Gao, M. Mahjouri-Samani M. Mahjouri-Samani, Y. S. Zhou Y. S. Zhou, M. Mitchell M. Mitchell, J. B. Park J. B. Park i Y. F. Lu Y. F. Lu*. "Laser Assisted Fabrication for Controlled Single-Walled Carbon Nanotube Synthesis and Processing(Invited Paper)". Chinese Journal of Lasers 36, nr 12 (2009): 3125–32. http://dx.doi.org/10.3788/cjl20093612.3125.
Pełny tekst źródłaAmendola, Vincenzo. "Laser‐Assisted Synthesis of Non‐Equilibrium Nanoalloys". ChemPhysChem 22, nr 7 (15.03.2021): 622–24. http://dx.doi.org/10.1002/cphc.202000987.
Pełny tekst źródłaFantoni, R., E. Borsella, S. Piccirillo, C. A. Nannetti, R. Ceccato i S. Enzo. "Laser assisted synthesis of ultrafine silicon powder". Applied Surface Science 43, nr 1-4 (grudzień 1989): 308–15. http://dx.doi.org/10.1016/0169-4332(89)90231-6.
Pełny tekst źródłaKaripbayev, Zh. "TIME-RESOLVED LUMINESCENCE EXCITED WITH N2 LASER OF YAG:CE CERAMICS FORMED BY ELECTRON BEAM ASSISTED SYNTHESIS". Eurasian Physical Technical Journal 17, nr 1 (czerwiec 2020): 73–76. http://dx.doi.org/10.31489/2020no1/73-76.
Pełny tekst źródłaNarayan, Arun, Lars Landström i Mats Boman. "Laser-assisted synthesis of ultra small metal nanoparticles". Applied Surface Science 208-209 (marzec 2003): 137–41. http://dx.doi.org/10.1016/s0169-4332(02)01352-1.
Pełny tekst źródłaTorres-Mendieta, Rafael, Ondřej Havelka, Michal Urbánek, Martin Cvek, Stanisław Wacławek, Vinod Vellora Thekkae Padil, Darina Jašíková, Michal Kotek i Miroslav Černík. "Laser-assisted synthesis of Fe-Cu oxide nanocrystals". Applied Surface Science 469 (marzec 2019): 1007–15. http://dx.doi.org/10.1016/j.apsusc.2018.11.058.
Pełny tekst źródłaLuches, A., S. A. Mulenko, V. P. Veiko, A. P. Caricato, V. A. Chuiko, Y. V. Kudryavtsev, A. V. Lopato, A. A. Petrov, F. Romano i D. Valerini. "Laser-assisted synthesis of semiconductor chromium disilicide films". Applied Surface Science 253, nr 15 (maj 2007): 6512–16. http://dx.doi.org/10.1016/j.apsusc.2007.01.023.
Pełny tekst źródłaWawrzyniak, Jakub, Jakub Karczewski, Jacek Ryl, Katarzyna Grochowska i Katarzyna Siuzdak. "Laser-Assisted Synthesis and Oxygen Generation of Nickel Nanoparticles". Materials 13, nr 18 (13.09.2020): 4068. http://dx.doi.org/10.3390/ma13184068.
Pełny tekst źródłaCrouse, C. A., E. Shin, P. T. Murray i J. E. Spowart. "Solution assisted laser ablation synthesis of discrete aluminum nanoparticles". Materials Letters 64, nr 3 (luty 2010): 271–74. http://dx.doi.org/10.1016/j.matlet.2009.10.060.
Pełny tekst źródłaHanus, F., i M. Wautelet. "Kinetics of cw laser‐assisted synthesis of thin CuxTeyfilms". Journal of Applied Physics 68, nr 7 (październik 1990): 3307–12. http://dx.doi.org/10.1063/1.346382.
Pełny tekst źródłaRozprawy doktorskie na temat "Laser-assisted synthesis"
Reppert, Jason Brooks. "Laser-assisted synthesis and optical properties of bismuth nanorods". Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1193080419/.
Pełny tekst źródłaElihn, Karine. "Synthesis of carbon-covered iron nanoparticles by photolysis of ferrocene". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5302-3/.
Pełny tekst źródłaCheck, Michael Hamilton. "Synthesis and Characterization of Low Dimensionality Carbon Nanostructures". University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1386089389.
Pełny tekst źródłaHoberg, Anne-Mette. "Intricacies regarding matrix-assisted laser desorption/ionisation of synthetic polymers". Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342522.
Pełny tekst źródłaLloyd, Paul M. "Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of synthetic polymers". Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343833.
Pełny tekst źródłaSnel, Marten Francis. "Matrix assisted laser desorption/ionisation time-of-flight mass spectroscopic analysis of synthetic polymers". Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/11419.
Pełny tekst źródłaMowat, Ian A. "Synthetic polymer analysis using matrix assisted laser desorption/ionization time-of-flight mass spectrometry". Thesis, University of Edinburgh, 1996. http://hdl.handle.net/1842/12128.
Pełny tekst źródłaGulko, Ilya Dmitrievich. "Ns Pulse / RF Hybrid Plasmas for Plasma Chemistry and Plasma Assisted Catalysis Applications". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1598271986860656.
Pełny tekst źródłaAktaş, Oral Cenk [Verfasser]. "Functional applications of Al·Al2O3 nanowires : laser assisted α-Al2O3 synthesis and fabrication of micro-/nanostructured surfaces for cell compatibility studies / Oral Cenk Aktaş". 2009. http://d-nb.info/996646078/34.
Pełny tekst źródłaShih, Yung-Han, i 施詠漢. "Novel green research:1.Rapid synthesis of chromatographic stationary phases.2.Metal-organic frameworks as enzyme reactors and matrixes in surface assisted laser desorption/ionization". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/67dmp8.
Pełny tekst źródła中原大學
化學研究所
101
In this dissertation, development of novel synthesis approach and the application of porous metal-organic frameworks are the purposes based on green research. In the first part of this study, ionic liquid 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) was used as reaction medium to prepare three common monolith materials including methacrylate ester-, styrene- and mixed methacrylate ester/styrene-based polymers either by water bath at 100℃or by microwave heating. Instead of volatile organic solvents, the usage of [C6mim][BF4] as reaction medium was more efficient for both reactions, the vinylization of column inner-wall and the monolith syntheses, which are the most time-consuming steps in conventional monolithic material preparation. When [C6mim][BF4] was used as reaction medium, the vinylization of fused silica capillary was achieved within 5 min, while ~20 h is required with conventional solvents (e.g. methanol). Furthermore, the reaction time for fabricating polymeric monolith was obviously reduced from 20 h (conventional method) to 5 min when IL solvent was used. In order to demonstrate the feasibility of these rapid synthetic methods, monoliths were employed as the separation columns for capillary electrochromatography (CEC) and nanoscale liquid chromatography/mass spectrometry (nano-LC/MS) in the separation of aromatic compounds, the qualitative and quantitative performances were comparable with the monoliths prepared by conventional approaches. In the second part of this study, dicyclohexylcarbodiimide was used to activate the free carboxylate groups on the metal-organic frameworks (MOFs) to an effective leaving group, and then reacted with trypsin via nucleophilic attack, finally the trypsin was immobilized onto MOFs (herein referred as trypsin-MOF) which was applied in protein digestion. The trypsin digested BSA peptides generated via the trypsin-MOFs reactors were analyzed by nano-LC/MS2 followed by the database searching for amino acids sequence coverage and matched peptides, confirmed the performance of these trypsin-MOFs. Based on the results, the amino acids sequence coverage and the number of matched peptides 69% and 41 for reusable trypsin-MIL-88B-NH2(Cr) under ultrasonic assisted digestion (2 min), which could be substituted for the traditional trypsin in-solution digestion (i.e. free trypsin with 18 h digestion). In contrast to the native MOFs using terephthalic acid (1,4-BDC) as ligands (MIL-101(Cr) and MIL-88B(Cr)), an amine-functionalized MOFs with NH2-1,4-BDC as ligand (MIL-88B-NH2(Cr)) exhibited increased efficiency for protein digestion ability possibly due to the increased hydrophilicity and better bio-compatibility which did not only reduce the undesired nonspecific adsorption of proteins also enhanced the enzyme immobilization and protein digestion efficiency. In the last part of this study, the cage-type (MIL-100(Fe), MIL-100(Cr), MIL-100(Al), MIL-101(Cr)) and the channel-type (DUT-4, DUT-5, CYCU-3) MOFs were chosen as matrixes in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) for analysis of polycyclic aromatic hydrocarbons (PAHs). In contrast to those PAHs using tradition organic matrix (α-cyano-4-hydroxycinnamic acid), background interference from the MOFs matrixes was very low or even disappeared for channel and cage MOFs, respectively. And the signal variance was the lowest when MIL-100(Fe) as matrix for analysis of PAHs, for example, the relative standard deviations (RSDs) of signal intensity with three replicated analyses were between 2.00%-16.33% for shot-to-shot assay. The results and the absence of background noises from the MS spectra suggested no ‘sweet spot’ problem resulted from the use of MIL-100(Fe) as matrix. Lastly, MIL-100(Fe) was used as solid-phase-extraction (SPE) adsorbent to trap trace-level PAHs (1 mg/L) in under ground water samples and as matrix for SALDI-MS analysis of PAHs in the same time. Hence, the limit of detection was lower from 1.16-11.41 ng/μL to 0.007-0.031 ng/μL without and with SPE, respectively.
Książki na temat "Laser-assisted synthesis"
Liang, Li, red. MALDI mass spectrometry for synthetic polymers analysis. Hoboken: Wiley, 2010.
Znajdź pełny tekst źródłaLloyd, Paul Maxwell. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of synthetic polymers. [s.l.]: typescript, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Laser-assisted synthesis"
Heszler, Peter, Lars Landström i Claes-Göran Grangvist. "Basics of UV Laser-Assisted Generation of Nanoparticles". W Gas Phase Nanoparticle Synthesis, 69–122. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2444-3_4.
Pełny tekst źródłaGrübler, Gerald, Hartmut Echner, Wolfgang Voelter i Stanka Stoeva. "Application of matrix-assisted laser desorption mass spectrometry in peptide sequencing and synthesis". W Peptides 1992, 445–46. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1470-7_195.
Pełny tekst źródłaWang, Y., L. Yurttas, B. E. Dale, D. H. Russell, G. R. Kinsel, L. M. Preston, M. S. Wright i T. K. Hayes. "Matrix-Assisted Laser Desorption Mass Spectrometry To Monitor Synthesis And Folding of Manduca Sexta Eclosion Hormone And Its Analogs". W Peptides, 265–67. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0683-2_86.
Pełny tekst źródłaPalani, I. A., D. Nakamura, K. Okazaki, M. Highasiata i T. Okada. "Influence of Sb as a Catalyst in Synthesize of Sb Doped ZnO Nanostructures Using Nanoparticle Assisted Pulsed Laser Deposition for UV LED Applications". W ZnO Nanocrystals and Allied Materials, 175–94. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1160-0_8.
Pełny tekst źródłaAithal, Shashi, i Vish Subramaniam. "Laser-Assisted and Optical Pumping Techniques for Diamond Synthesis". W Diamond Films Handbook. CRC Press, 2002. http://dx.doi.org/10.1201/9780203910603.ch9.
Pełny tekst źródłaTarasenka, N. N., A. A. Nevar, A. V. Butsen, N. V. Tarasenko i V. A. Lapina. "LUMINESCENT CARBON NANODOTS FABRICATED BY LASER ASSISTED SYNTHESIS IN LIQUIDS". W Physics, Chemistry and Application of Nanostructures, 228–31. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813224537_0053.
Pełny tekst źródłaMarganakop, Sheetal, Pramod Kattimani, Sudha Belgur Satyanarayana i Ravindra Kamble. "Microwave Synthesized Functional Dyes". W Microwave Heating - Electromagnetic Fields Causing Thermal and Non-Thermal Effects. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94946.
Pełny tekst źródłaRana, G. "Recent Advances in Processing of Hard Ferrites". W Materials Research Foundations, 35–65. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902318-2.
Pełny tekst źródłaEmmett, Stevan R., Nicola Hill i Federico Dajas-Bailador. "Infectious disease". W Clinical Pharmacology for Prescribing. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199694938.003.0019.
Pełny tekst źródłaKim, Ig-Hyeon, Seon-Hyo Kim i Kyoo-Young Kim. "Synthesis of AlN Thin Film by Ion Beam Assisted Sputter Deposition". W Laser and Ion Beam Modification of Materials, 447–50. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81994-9.50094-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Laser-assisted synthesis"
Yakovlev, A. G., i Vadim P. Veiko. "New schematic decisions and materials for 3D laser synthesis". W Laser-Assisted Microtechnology 2000, redaktor Vadim P. Veiko. SPIE, 2001. http://dx.doi.org/10.1117/12.413748.
Pełny tekst źródłaRen, ZhongMin, Yongfeng Lu i Z. F. He. "Progress in carbon nitride synthesis by pulsed-laser deposition". W Laser-Assisted Microtechnology 2000, redaktor Vadim P. Veiko. SPIE, 2001. http://dx.doi.org/10.1117/12.413764.
Pełny tekst źródłaMulenko, Sergey A., Michail M. Nishchenkko i Nikolai T. Gorbachuk. "Laser synthesis of disilicides based on iron and their application for photothermal tensoconverters". W Laser-Assisted Microtechnology 2000, redaktor Vadim P. Veiko. SPIE, 2001. http://dx.doi.org/10.1117/12.413766.
Pełny tekst źródłaTyurnina, Anastasiya E., Vladimir Y. Shur, Roman V. Kozin, Dmitry K. Kuznetsov i Evgeny A. Mingaliev. "Synthesis of stable silver colloids by laser ablation in water". W Fundamentals of Laser Assisted Micro- and Nanotechnologies 2013, redaktorzy Vadim P. Veiko i Tigran A. Vartanyan. SPIE, 2013. http://dx.doi.org/10.1117/12.2053557.
Pełny tekst źródłaNakamura, D., T. Okada i K. Sakai. "Synthesis and optical property of nanostructured ZnO crystals by nanoparticle-assisted pulsed laser deposition". W Fundamentals of Laser Assisted Micro- and Nanotechnologies 2010, redaktorzy Vadim P. Veiko i Tigran A. Vartanyan. SPIE, 2010. http://dx.doi.org/10.1117/12.887240.
Pełny tekst źródłaHan, Y. X., H. Ling i Y. F. Lu. "Laser-assisted combustion-flame synthesis of diamond films". W ICALEO® 2006: 25th International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2006. http://dx.doi.org/10.2351/1.5060865.
Pełny tekst źródłaMigulin, V. V., Victor G. Ralchenko i Y. J. Baik. "Oxygen-assisted laser cutting and drilling of CVD diamond". W Lasers in Synthesis, Characterization, and Processing of Diamond, redaktorzy Vitali I. Konov i Victor G. Ralchenko. SPIE, 1998. http://dx.doi.org/10.1117/12.328205.
Pełny tekst źródłaVeiko, Vadim P., Sergei A. Rodionov, Boris P. Timofeev, Evgeny B. Yakovlev, Alexander T. Shakola, Dmitry L. Goobanov, Alexei K. Kromin i Jian Wu. "Laser-assisted 3D-LOM systems: analysis and synthesis". W Photonics West '96, redaktorzy Jan J. Dubowski, Jyotirmoy Mazumder, Leonard R. Migliore, Chandrasekhar Roychoudhuri i Ronald D. Schaeffer. SPIE, 1996. http://dx.doi.org/10.1117/12.237747.
Pełny tekst źródłaGonglewski, J. D., i D. C. Dayton. "Guidestar-Assisted Wavefront Sensor Speckle Holography: Postdetection Distortion Compensation using a Laser Guidestar Reference". W Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/srs.1992.wa4.
Pełny tekst źródłaMulenko, S. A. "Synthesis of nanometric iron and chromium oxide films by reactive pulsed laser deposition for photo-thermo sensors". W Fundamentals of Laser Assisted Micro- and Nanotechnologies 2010, redaktorzy Vadim P. Veiko i Tigran A. Vartanyan. SPIE, 2010. http://dx.doi.org/10.1117/12.889166.
Pełny tekst źródła